

Re3gistry

Software documentation - Version 1.3

Re3gistry Software documentation

2

The following documentation provides details related to the Re3gistry software, including the
installation instructions. It provides also several sections including guides to create a custom
registry service starting from an example and a guide to extend the software by creating new
modules.

This is a live document; it is being improved continuously. To have the last version you can refer to
https://ies-svn.jrc.ec.europa.eu/projects/registry-development

Please report any feedback on the documentation at: inspire-registry-dev@jrc.ec.europa.eu

Reuse is authorised, provided the source is acknowledged. The reuse policy of the

European Commission is implemented by a Decision of 12 December 20111.

1 http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011D0833

https://ies-svn.jrc.ec.europa.eu/projects/registry-development?jump=wiki
mailto:inspire-registry-dev@jrc.ec.europa.eu
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011D0833
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011D0833

Re3gistry Software documentation

3

Table of contents

Table of contents .. 3

Abbreviations .. 11

Bibliography ... 12

1. Overview ... 13

1.1. What is the Re3gistry? ... 13

1.2. Features and capabilities ... 13

1.3. Getting the software.. 13

1.4. License .. 14

1.5. Background .. 14

1.1. Acknowledgments ... 15

1.2. What is new in the Re3gistry 1.3 .. 15

2. Understanding the Re3gistry ... 16

2.1. The Re3gistry information model ... 16

2.1.1. The information model components .. 16

2.1.1.1. The registry component .. 16

2.1.1.2. The register component .. 16

2.1.1.3. The itemclass component ... 17

2.1.1.4. The item component ... 17

2.1.1.5. The status component .. 17

2.1.2. Standard and customised attributes ... 18

2.1.2.1. Registry standard attributes... 18

2.1.2.2. Register standard attributes ... 18

2.1.2.3. Item standard attributes ... 19

2.1.2.4. Custom attributes ... 19

2.1.3. Language representations: localisation .. 19

2.2. The Re3gistry system architecture ... 20

2.2.1. Modules overview .. 20

2.2.2. Registry core module ... 21

2.2.3. Data import module ... 21

2.2.3.1. Import data file ... 22

2.2.3.1.1. Data file structure .. 22

Re3gistry Software documentation

4

2.2.3.1.2. Internal and external items .. 22

2.2.3.1.3. Data actions and CSV formats .. 23

2.2.3.2. Data analyser .. 30

2.2.3.3. Data storage .. 31

2.2.4. Staticiser module .. 32

2.2.4.1. Staticisation process ... 32

2.2.4.2. XSLT ... 32

2.2.4.3. Static element localisation .. 33

2.2.4.4. Additional information .. 34

2.2.5. Deployer module .. 34

2.3. Re3gistry administration panel ... 35

3. Installing the Re3gistry ... 36

3.1. System requirements .. 36

3.2. Package details ... 36

3.3. Important notes ... 37

3.4. Database configuration ... 37

3.4.1. Creating a new database ... 37

3.4.2. Running the SQL scripts to create tables and populating them 37

3.5. Configuring the Re3gistry .. 39

3.5.1. Move the binaries folder to Tomcat’s webapp folder ... 40

3.5.2. Modifying the configuration files .. 40

3.5.2.1. persistence.xml ... 41

3.5.2.2. Application.properties .. 41

3.5.2.3. logcfg.xml .. 41

3.5.2.4. Re3gistryData.properties .. 42

3.5.2.5. Re3gistryStaticizer.properties ... 42

3.5.2.6. Re3gistryDeployer.properties [Optional] .. 43

3.5.3. Setting up the authentication method ... 44

3.5.3.1. Available authentication methods .. 44

3.5.3.2. Choosing and implementing the authentication method... 44

3.5.3.2.1. Application.properties ... 44

3.5.3.2.2. web.xml .. 44

3.5.4. Adding users to SHIRO ... 45

Re3gistry Software documentation

5

4. Using the Re3gistry ... 46

4.1. Accessing the Re3gistry administration panel ... 46

4.2. Importing data ... 47

4.3. Exporting and converting data files .. 49

4.4. Deploying the contents ... 50

4.4.1. Moving data from the Re3gistry software to the server ... 50

4.4.2. Creating a modification summary RSS feed .. 50

5. Serving the Re3gistry contents .. 52

5.1. System requirements .. 52

5.2. Web service .. 52

5.2.1. RESTful web service ... 53

5.2.2. Standard web service ... 54

5.3. Installing the Re3gistry webapp .. 54

5.3.1. Copy the sample web application folder .. 55

5.3.2. Setting the web application ... 55

5.3.3. Configuration .. 55

5.3.3.1. conf.php .. 56

5.3.3.2. logger.xml .. 56

5.3.4. Configuring the HTTP server .. 57

5.3.5. Set up the service-specific configuration .. 58

5.4. Managing solr ... 59

5.4.1. Installing solr ... 59

5.4.2. Configuring solr .. 59

5.4.2.1. solr.xml .. 59

5.4.3. core.properties of solr registry collection ... 60

5.4.3.1.1. Schema.xml .. 60

5.5. Connecting solr to the Re3gistry webapp .. 61

5.6. Indexing your registry contents .. 61

5.7. Testing the web service ... 62

5.8. INSPIRE register federation descriptors files - RoR descriptors .. 64

6. Customising the Re3gistry .. 65

6.1. Customising the Re3gistry contents ... 65

6.1.1. Creating a costumised registry .. 65

Re3gistry Software documentation

6

6.1.1.1. Setting the registry parameters .. 65

6.1.1.2. Defining the email address for the registry contact point .. 66

6.1.1.3. Setting the supported languages .. 66

6.1.1.4. Setting the status values ... 67

6.1.2. Creating costumised registers ... 67

6.1.2.1. Setting the register parameters .. 67

6.1.2.2. Defining the itemclass ... 68

6.1.3. Translating the content .. 69

6.1.4. Import data file ... 71

6.1.4.1. Simple register .. 73

6.1.4.2. Hierarchical register .. 74

6.1.4.2.1. Hierarchical register – first level .. 74

6.1.4.2.2. Hierarchical register – second level .. 74

6.1.5. Transformation files ... 75

6.1.6. Deployer configuration .. 75

6.2. Customising the Re3gistry web interface ... 76

6.2.1. Webapp structure .. 79

6.2.2. Modes ... 79

6.2.2.1. GUI localisation file ... 82

6.2.2.2. MODE 1 descriptor - Registry page ... 82

6.2.2.3. MODE 2 descriptor - Register page ... 84

6.2.2.4. MODE 3 descriptor - Item detail page .. 87

6.2.2.5. MODE 4 Descriptor - Item detail for hierarchical elements 90

6.2.3. Static pages ... 93

6.2.3.1. Static page example: status.descriptor.json ... 93

6.2.4. Customised pages .. 95

6.2.4.1. Example custom page descriptor .. 95

6.2.5. Website parts ... 95

7. Developing the Re3gistry ... 97

7.1. Technology ... 97

7.1.1. Web Server ... 97

7.1.2. Database ... 97

7.2. System structure .. 97

Re3gistry Software documentation

7

7.2.1. Module concept ... 97

7.2.2. Re3gistryCommon module .. 98

7.2.3. Re3gistry software interface ... 98

7.3. Source code .. 99

7.3.1. Load projects .. 99

7.3.2. Configuration files .. 99

7.3.3. Choose the authentication method ..102

7.3.4. Database creation and initialisation ..104

7.3.5. Build projects ..104

7.3.6. Creating new modules ...104

7.3.6.1. Step 1 .. 104

7.3.6.2. Step 2 .. 105

7.3.6.3. Step 3 .. 107

7.3.6.4. Step 4 .. 107

7.3.6.5. Step 5 .. 107

7.3.6.6. Step 6 .. 108

7.3.6.7. Step 7 .. 109

7.3.6.8. Step 8 .. 112

7.3.6.9. Step 9 .. 113

Index of keywords ...114

Re3gistry Software documentation

8

Index of figures and tables

Figure 1: Simplified information model ... 16

Figure 2: Schematic system description .. 20

Figure 3: System description .. 21

Figure 4: Example of a zip file structure .. 22

Figure 5: Encoding of the addition CSV file when several values are not available 23

Figure 6: configuration of the mandatory field property.. 24

Figure 7: Addition CSV example - internal items ... 25

Figure 8: Addition CSV example - external items .. 26

Figure 9: Clarification CSV file example ... 27

Figure 10: Example of supersession CSV file ... 28

Figure 11: Supersession CSV example ... 29

Figure 12: Retirement CSV file example .. 30

Figure 13: XSLT transformation for XML .. 32

Figure 14: XSLT transformations files for the custom XML format (contained in the xml folder) .. 33

Figure 15: GUI-languages folder, French file structure ... 33

Figure 16: Usage example. Place this piece of code to retrieve the translated word in the file. ... 33

Figure 17: Structure of the Re3gistry package .. 36

Figure 18: Executing the create-tables.sql script from pgAdminIII .. 38

Figure 19: Nineteen tables created and populated .. 39

Figure 20: Usual Tomcat installation file structure ... 40

Figure 21: Default authentication method .. 44

Figure 22: Shiro.ini users section ... 45

Figure 23: Authentication page to access the Re3gistry software administration panel 46

Figure 24: Data management system page ... 47

Figure 25: ‘Add data file’ window .. 47

Figure 26: Procedure details in the data management system panel ... 48

Figure 27: Produced data in the ‘custom’ folder for the ‘neutral-example’ 50

Figure 28: Windows-deploy.bat contents.. 50

Figure 29: Popup window allowing creating or updating an RSS file ... 51

Figure 30: Example of content-negotiation parameters... 53

Figure 31: .var file example .. 54

Figure 32: Web service requests - Direct URL example .. 54

Figure 33: Paste the webapp folder into the exported data folder ... 55

Figure 34: Proposed structure to locate he webapp files and the data files 55

Figure 35: Properties in the conf.php file .. 56

Figure 36: conf.php file opened in Notepad++.. 56

Figure 37: Property in the logger.xml configuration file where the log file is defined 57

Figure 38: httpd.conf file configuration ... 57

Figure 39: Settings to configure the HTTP server .. 58

Figure 40: app_data folder structure after editing ... 59

Figure 41: Configuration of the solr.xml file .. 60

Figure 42: New ‘registry’ collection for solr ... 60

Re3gistry Software documentation

9

Figure 43: solr administration panel .. 61

Figure 44: Example of definition of solr endpoint in the conf.php .. 61

Figure 45: command to update the indexing of solr ... 62

Figure 46: Querying indexed contents within the solr administration panel, 62

Figure 47: Re3gistry generic user interface serving the ‘neutral-example’ registers contents 63

Figure 48: Autocomplete function ... 63

Figure 49: Generic URL to get the ROR file in the re3gistry.. 64

Figure 50: Fields of registry table of the database .. 65

Figure 51: Fields of reference table of the database .. 66

Figure 52: Language configuration... 66

Figure 53: Definition of the register status .. 67

Figure 54: Register section of the script .. 68

Figure 55: itemclass section of the script .. 68

Figure 56: Fields in the Localization table of the database ... 69

Figure 57: localisation settings ... 70

Figure 58: Example of localisation file for the English language .. 70

Figure 59: Settings in Open Office Calc to open appropriately he Re3gistry import actions files. . 72

Figure 60: Re3gistry import action files in a spreadsheet (Open Office Calc) 72

Figure 61: Re3gistry import action files in a notepad program (Notepad++) 73

Figure 62: Example of an addition file with an additional customised attribute in a simple register
.. 73

Figure 63: Example of addition in hierarchical register using the addition.csv of its itemclass 74

Figure 64: Example of invalidation of an item ... 74

Figure 65: Creation of the second level of a hierarchical register .. 75

Figure 66: XSLT files needed to support the conversion in HTML formats for the simple and
hierarchical registers ... 75

Figure 67: Addresses theme within the theme register of the INSPIRE Registry 80

Figure 68: Restriction code code list within the code list register of the INSPIRE Registry 81

Figure 69: Example of configuration string for the ‘Status’ static page ... 94

Figure 70: Loading the project with NetBeans IDE ... 99

Figure 71: Example POM file ..100

Figure 72: Creating new project from the project browser ..105

Figure 73: Project type selection ..106

Figure 74: Module name ..106

Figure 75: POM edit example ...107

Figure 76: Constants.java example ..107

Figure 77: Creation of the module's folder..108

Figure 78: Module's properties file ..109

Figure 79: Localization folder for the new module ...110

Figure 80: Localization properties folder ...111

Figure 81: Module's localization properties file ..112

Figure 82: Logger configurations ..113

http://ies-intranet.jrc.it/h06/Shared%20Documents/Re3gistryDocumentation/Re3gistryV1.3_Documentation-Draft.docx#_Toc467579177

Re3gistry Software documentation

10

Table 1: Field structure in the addition CSV file .. 24

Table 2: CSV fields for the clarification data file .. 26

Table 3: CSV fields for the supersession data file .. 27

Table 4: CSV fields for the invalidation data file .. 28

Table 5: CSV fields for the retirement data file ... 29

Table 6: Analyser check and report message type by action.. 30

Table 7: Procedure statuses ... 35

Table 8: RESTful URL example .. 53

Re3gistry Software documentation

11

Abbreviations

ARE3NA A Reusable INSPIRE Reference Platform

CSV Comma Separated Values file

EC European Commission

ECAS European Commission Authentication Service

GUI Graphical user interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

INSPIRE INfrastructure for SPatial Information in Europe

ISA Interoperability Solutions for European Public Administrations

JRC Joint Research Centre

php Hypertext Preprocessor

POM Project Object Model

ROR Register Of Registers

SQL Structured Query Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

RESTful Representational State Transfer

RSS Really Simple Syndication

XSLT Extensible Stylesheet Language Transformations

webapp Web application

Re3gistry Software documentation
Overview

12

Bibliography

ISA Interoperability Solutions for European Public Administrations
http://ec.europa.eu/isa

INSP-DIR Infrastructure for Spatial Information for Europe (INSPIRE) Directive 2007/2/EC
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32007L0002

WTF The EU Water Framework Directive - integrated river basin management for
Europe
http://ec.europa.eu/environment/water/water-framework

SEIS Shared Environmental Information System
http://ec.europa.eu/environment/seis/

ISO-19135 Geographic information -- Procedures for item registration -- Part 1:
Fundamentals
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?cs
number=54721

INSP-THEME INSPIRE theme register
http://inspire.ec.europa.eu/theme

INSP-REG INSPIRE registry
http://inspire.ec.europa.eu/registry

INSP-
CODELIST

INSPIRE code list register
http://inspire.ec.europa.eu/codelist

APACHE-CN Apache HTTPD - Content negotiation
http://httpd.apache.org/docs/2.4/content-negotiation.html

NETBEANS NetBeans IDE
https://netbeans.org

APACHE-
HTTPD

Apache HTTPD server
https://httpd.apache.org

APACHE-
TOMCAT

Apache Tomcat server
http://tomcat.apache.org

APACHE-
CONFIG-
FILES

Apache Configuration files
https://httpd.apache.org/docs/current/configuring.html)

EclipseLink EclipseLink Java persistence solution
http://www.eclipse.org/eclipselink

SHIRO Apache SHIRO
http://shiro.apache.org

pgAdmin PostgreSQL administration and management tools
https://www.pgadmin.org

http://ec.europa.eu/isa
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32007L0002
http://ec.europa.eu/environment/water/water-framework
http://ec.europa.eu/environment/seis/
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=54721
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=54721
http://inspire.ec.europa.eu/theme
http://inspire.ec.europa.eu/registry
http://inspire.ec.europa.eu/codelist
http://httpd.apache.org/docs/2.4/content-negotiation.html
https://netbeans.org/
https://httpd.apache.org/
http://tomcat.apache.org/
https://httpd.apache.org/docs/current/configuring.html
http://www.eclipse.org/eclipselink
http://shiro.apache.org/
https://www.pgadmin.org/

Re3gistry Software documentation
Overview

13

1. Overview

1.1. What is the Re3gistry?

The Re3gistry is a reusable open source solution for managing and sharing ‘reference codes’. It
provides a consistent central access point where labels and descriptions for reference codes can
be easily browsed by humans and retrieved by machines.

Public administrations, businesses and citizens regularly exchange data across borders and sectors
using reference codes. The usefulness of the reference codes depends on their proper
management. Shared codes cannot change or simply disappear over time, all versions of a code
need to be traceable and properly documented.

1.2. Features and capabilities

 CSV data import with consistency checking
 Highly flexible and customisable
 Supported formats: HTML, XML, JSON, RDF, Atom, CSV
 Formats that can be easily customised or new formats added through transformation files
 An underlying model for register items that can also be easily customised
 Support for multi-lingual content
 Support for versioning
 RESTful API with content negotiation
 Free-text search
 Support for web service deployment
 Highly performant access to register content
 Integration with ECAS authentication
 The solution has been developed following the Standard ISO 19135 ‘Procedures for item

registration’ [ISO-19135].
 Externally governed items referenced through the URI
 Support to the INSPIRE register federation format (RoR)

1.3. Getting the software

The Re3gistry software is freely available for download at:
https://joinup.ec.europa.eu/software/Re3gistry/release/all

To provide feedback on the software we kindly invite you to contact us at: inspire-registry-
dev@jrc.ec.europa.eu

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32553
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32553
https://joinup.ec.europa.eu/software/re3gistry/release/all
mailto:inspire-registry-dev@jrc.ec.europa.eu
mailto:inspire-registry-dev@jrc.ec.europa.eu

Re3gistry Software documentation
Overview

14

1.4. License

The Re3gistry is released under the European Union Public Licence - EUPL v.1.1 2.

1.5. Background

The European Union (EU) Member States are currently implementing the INSPIRE Directive [INSP-
DIR] and related regulations. Technical guidelines3 for INSPIRE’s implementation, based on
existing international standards, have been developed or are currently under development.
Interoperability between systems is, however, being limited by varying ways of implementing
standards, the regular evolution of standards and challenges in coordinating changes between
standards, alongside varying choices in the technologies being adopted.

To further address these interoperability issues and provide support to the Member States, the
platform will provide guidance, collaboration, sharing of best practices and approaches and a
reference implementation of common components through the following activities:

 Inventory of
o Existing INSPIRE components from the Open Source community
o Components used within the Member States to implement INSPIRE
o Missing components

 Selection of other policies and initiatives from other sectors (such as INSPIRE, Water
Framework Directive [WTF], Digital Agenda for Europe, open data, Shared Environmental
Information System (SEIS) [SEIS] etc.;) requiring exchange and sharing and maintenance of
spatial data sets and services

 Selection of the missing components and/or functionalities. Multilingual support is
envisioned where required

 Support Open Source projects to develop the missing items and produce the related
documentation (installation guides and technical documentation in several languages)

 Selection and development where required of conformance test suites
 Set up a collaborative platform to share and maintain the components.

The outputs of this work will also appear on the ISA programme collaborative platform, JoinUp4,
to aid wide re-use.

2 https://joinup.ec.europa.eu/sites/default/files/eupl1.1.-licence-en_0.pdf
3 http://inspire.ec.europa.eu/inspire-technical-guidance/57753
4 https://joinup.ec.europa.eu/software/re3gistry/description

https://joinup.ec.europa.eu/sites/default/files/eupl1.1.-licence-en_0.pdf
http://inspire.ec.europa.eu/inspire-technical-guidance/57753
https://joinup.ec.europa.eu/software/re3gistry/description

Re3gistry Software documentation
Overview

15

1.1. Acknowledgments

As part of the Interoperability Solutions for European Public Administrations (ISA) Programme5
[ISA], the European Commission’s (EC) Joint Research Centre (JRC) is establishing A Reusable
INSPIRE Reference Platform (ARE3NA) which is identifying and developing common components
for the successful implementation of the INSPIRE Directive [INSP-DIR].

The work on the Re3gistry addresses a missing component of INSPIRE as an open source solution
for use in other contexts, including those who want to manage multilingual code lists in various
levels of public administration in Europe.

This software has been engineered by the ISA founded resources Daniele Francioli and Emanuela
Epure.

We are also grateful for the review of this document to Lorena Hernandez Quirós and Robin S.
Smith.

1.2. What is new in the Re3gistry 1.3

This is the version 1.3 of the Re3gistry software.

The improvements and changelog of this version are:

 Support to the external items, referenced through the URI with the possibility to store also
additional metadata (like the label, status, etc.).

 Support to the INSPIRE register federation format (RoR)
 Bug fixes

5 http://ec.europa.eu/isa/index_en.htm

http://ec.europa.eu/isa/actions/01-trusted-information-exchange/1-
17action_en.htm

https://joinup.ec.europa.eu/community/are3na/description

Re3gistry software https://joinup.ec.europa.eu/software/Re3gistry/home

INSPIRE registry service http://inspire.ec.europa.eu/registry/

http://ec.europa.eu/isa/index_en.htm
http://ec.europa.eu/isa/actions/01-trusted-information-exchange/1-17action_en.htm
http://ec.europa.eu/isa/actions/01-trusted-information-exchange/1-17action_en.htm
https://joinup.ec.europa.eu/community/are3na/description
https://joinup.ec.europa.eu/software/re3gistry/home
http://inspire.ec.europa.eu/registry/

Re3gistry Software documentation
Understanding the Re3gistry

16

2. Understanding the Re3gistry

2.1. The Re3gistry information model

The Re3gistry software populates the registry contents from the importing of simple text-based
data files. Then it organises and exports the data in different formats. The produced files can then
optionally be served online through a customisable web service.

2.1.1. The information model components

A simple representation of the system’s information model is shown in Figure 1: Simplified
information model.

Figure 1: Simplified information model

2.1.1.1. The registry component

A registry is an information system on which registers are maintained [ISO 19135].

2.1.1.2. The register component

Re3gistry Software documentation
Understanding the Re3gistry

17

A register is a single controlled collection or a list of items with unique identifiers. Each register is
operated on behalf of some owner organisation that provides the authority for the collection.

The type of item that can be entered in a register is completely open, that is anything which can
be given a Uniform Resource Identifier (URI) can be registered.

2.1.1.3. The itemclass component

The itemclass represents a set of items with common properties. It defines a group of items
contained in a specific register.

For example, in a ‘theme register’, such as the INSPIRE Theme register [INSP-THEME], the
itemclass of the items contained can be identified as ‘theme items’.

Itemclasses can have parent/child(s) relationship within the same register. In this case the register
is a hierarchical register.

For example, in the INSPIRE Registry [INSP-REG], the ‘code list register’ [INSP-CODELIST] has two
itemclasses: CodeList and CodeListValue. More specifically, the CodeList itemclass is the parent of
the CodeListValue one. The CodeListValue itemclass contains the items that are part of the ‘Code
List’ collection.

The ‘collection’ relation and the hierarchy between the itemclasses is used to handle hierarchical
registers.

2.1.1.4. The item component

The items are elements that can be contained in a register. In a hierarchical register, an item can
also be a container (collection) of other items.

For example, in the INSPIRE registry [INS-REG], the itemclass ‘CodeList’ could contain other items
(items with itemclass ‘CodeListValue’). The contained item (the ‘code list value item’), indicates
which collection it belongs to by means of the collection_id field in the import file.

Another type of relation between items of the same itemclass is the parent/child relation. This
kind of relation is provided by the parent_id field in the data import file. This field represents the
reference to the local_id of the parent item.

The parent item and the child item shall be in the same itemclass. If an item is part of a collection,
it can have a parent contained in the same collection.

2.1.1.5. The status component

Each item has a status as defined in ISO 19135-1:

 Valid: the item has been accepted. It is recommended for use, and has not been superseded
or retired.

Re3gistry Software documentation
Understanding the Re3gistry

18

 Invalid: a decision has been made that a previously valid register item contains a substantial
error and is invalid, and will normally have been replaced by a corrected item.

 Submitted: the item has been entered into the register, but the control body has not accepted
the proposal to add it.

 Superseded: the item has been superseded by another item and is no longer recommended
for use.

 Retired: A decision has been made that the item is no longer recommended for use. It has not
been superseded by another.

2.1.2. Standard and customised attributes

Each element represented by the Re3gistry has a standard list of attributes.

2.1.2.1. Registry standard attributes

Id Identifier of the registry

Label Label of the registry

Content
summary

Description of the purpose for which the registers and their items managed in
the registry are made available to potential users.

Registry
manager

Person or organization responsible for the day-to-day management of the
registry

2.1.2.2. Register standard attributes

Id Identifier of the register

Label Label of the register

Content
summary

Description of the purpose for which items in the register are made available to
potential users. It should also specify any limits to the scope of the register and
identify the types of applications for which the items are intended.

Owner Organization that establishes a register

Register
manager

Organization to which management of a register has been delegated by the register
owner

Control
body

Group of technical experts that makes decisions regarding the content of a register.

Submitter Organization authorized by a register owner to propose changes to the content of
a register

Contact
point

Name or position of the person who serves as a point of contact for information
about the register owner and the register

License The license under which the register content is being made available

The information related to the registry and the register can be configured and edited in the system
during the installation process (Refer to section 3.4 Database configuration).

Re3gistry Software documentation
Understanding the Re3gistry

19

2.1.2.3. Item standard attributes

Id Identifier of the item

Label Label of the item

Definition Definition of the item (precise statement of the nature, properties, scope
or essential qualities of the item)

Description Description of the element (statement of the nature, properties, scope, or non-
essential qualities of the item but are not specified by the definition)

Status Status of the item

2.1.2.4. Custom attributes

The custom attributes are designed to add further information out of the standard attributes that
by default are available for any item.

The value contained in the custom attributes can be localised like the standard fields.

2.1.3. Language representations: localisation

The Re3gistry has two different ways of managing multiple language representations.

 The Re3gistry software user interface uses a localisation file to translate the Graphical user
interface (GUI) of the management console. This file is not related to the translation of the
contents of the registry itself.

Currently the software package only provides English and Italian translation files for the Re3gistry
administration panel.

 The data processed and produced by the Re3gistry has in turn two ways of handling the
multilingualism:

o The data localisation, included in the import data file;
o The GUI localisation, included in the web service’s webapp configuration.

By using the examples contained in the package, you should be able to load and export the
sample data in all the languages supported by the INSPIRE registry service [INSP-REG].

Re3gistry Software documentation
Understanding the Re3gistry

20

2.2. The Re3gistry system architecture

2.2.1. Modules overview

The Re3gistry handles the entire data flow process for managing register item: from the data
import to the export of every item in different formats.

To do so, the system orchestrates a set of modules. There is a common module, named Registry
core module, implementing the basic features, and additional modules taking care of other
functionalities. Figure 2, shows a schematic representation of the system.

More specifically, this package is bundled with:

 the data import module, responsible for importing and editing data;
 the data staticization module, responsible for saving the data as static files in

different formats; and,
 the deployer module, responsible for deploying the static files produced to the target

production server.

Figure 2: Schematic system description

Figure 3, instead, gives a complete overview of the Re3gistry and the rest of components required
to provide a RESTful web service.

Re3gistry Software documentation
Understanding the Re3gistry

21

Figure 3: System description

The following paragraphs provide more detailed description of every component involved.

2.2.2. Registry core module

The registry core module contains the basic objects of the information model and database
operations required by the system.

2.2.3. Data import module

The data import module is responsible for the data operations that can be performed on the
registers.

The input for this module comes from the import data file (described in detail in section 2.2.3)
which is a compressed file in zip format composed of files in CSV format whose name matches
with the operations to process per register.

During the import of data, the data import module performs different testing to ensure the data
consistency within the register.

The data import module procedure performs the following actions:

1. Format check: checks the correctness of the structure of CSV files, as described in
section 2.2.3.1.2

2. Data analysis: checks the data semantically by verifying the links between data and its
consistency, as described in section 2.2.3.2 Data analyser.

3. Data storage: saves in the database the information provided by the CSV files, as
described in section 2.2.3.3 Data storage.

Re3gistry Software documentation
Understanding the Re3gistry

22

An important concept is the ‘operating language’. This property identifies the master language: a
language representation that shall be always available.

For example, if the operating language is set to English, and a new item has to be added in French,
the addition file shall necessarily also contain the item in the English.

To configure the master language, check how to configure the Re3gistryData.properties file.

2.2.3.1. Import data file

The Re3gistry reads the data to be imported from the data import file (zip file). The zip file structure
is described in the following paragraph.

2.2.3.1.1. Data file structure

The root of the zip file contains one folder for each itemclass involved (for the definition of
itemclass, refer to 2.1.1.3 The itemclass component).

The name of the folder has to be exactly the same name of the itemclass, including the case (the
reference to the register is taken through the itemclass, which is linked to the register in the
information model).

Each of these folders contain those CSV files related to the action to be performed on the specific
itemclass. The files are named with the name of action in lowercase (See Figure 4).

Figure 4: Example of a zip file structure

import.zip

 ApplicationSchema/addition.csv

 ApplicationSchema/clarification.csv

 Theme/supersession.csv

 Theme/retirement.csv

 CodeList/invalidation.csv

The zip data files has to contain only those the files and folders required to perform the intended
actions. Those files that are not needed should not be part of the zip.

For example, the sample zip data file provided in Figure 4, will perform:

 addition(s) and clarification(s) for the ApplicationSchema itemclass;
 supersession(s) and retirement(s) for the Theme itemclass;
 invalidation for the CodeList itemclass.

2.2.3.1.2. Internal and external items

The Re3gistry is able of storing items as well as referencing externally governed items.

The difference between the two types of items is:

Re3gistry Software documentation
Understanding the Re3gistry

23

 Internal items: these items are defined and governed internally within the registers
contained in the registry system. This is the standard type of items. All the information
about these items, such as the label, definition, status etc., are stored in the Re3gistry
database.

 Externally governed items: these items are defined and governed in an external register.
The Re3gistry can store these items by referencing them. This means that for these items,
the only information needed is the URI of the externally governed item. These items can
optionally store other information like label, status or other fields. A typical scenario for
these items is the register extension. In this case, if a register A is extending a register B,
the register A shall contain all of the element of B plus the extended element defined in A.
In this case, the items defined in the register B will be referenced using the external item,
whereas the extension items defined in A will be internal items.

2.2.3.1.3. Data actions and CSV formats

The system supports five type of actions which matches with the available CSV files for every
itemclass.

 Addition
 Clarification
 Supersession
 Invalidation
 Retirement

2.2.3.1.3.1. Addition

This action adds the specified items into the appropriate register.

The CSV file for this action is composed of two different types of fields:

 Main fields
 Additional fields

The values for the main fields must be provided even if no values are available. If a value is not
available, the field will remain blank among the CSV defined separator for the Re3gistry “|”,
without any space character (See Figure 5).

Figure 5: Encoding of the addition CSV file when several values are not available

value1|||value2|value3|||value4||

Moreover, there is a set of mandatory fields required for every type of action.

However, if you wish to change this default behaviour, configure as wished the data module
properties file. The property that defines which are the mandatory fields is contained in

Path <root_folder>/Project_package_1.X/binaries/Re3gistry-1.X/WEB-

INF/classes/configurations/modules/Re3gistryData.properties:

data.mantatoryfields.<action_name>=<field>.<field>. …

Re3gistry Software documentation
Understanding the Re3gistry

24

The Figure 6 , shows how the mandatory fields are defined.

Figure 6: configuration of the mandatory field property

Data file header:

LocalId|ParentLocalId|CollectionLocalId|Language|Label|Definition|Descriptio

n|Status|Comment|*Theme[t,f,f,t]|*UMLName[t,f,f,f]

…

 Property in the properties file:

…

data.mantatoryfields.addition=0.3.3.7

…

List the index of the field as in the property above to set a common field

mandatory.

The additional fields by us called custom attributes, allow adding extra information by the user to
fit its needs. The properties of these fields are described in Table 1.

Table 1: Field structure in the addition CSV file

Type Code Description

Mandatory
fields

LocalId
(mandatory)

The local identifier (id) is used to identify an item inside the
register and to create the URI of the item. If an item has a
local identifier such as ‘LocalId’, the URI will be composed as
follow: ‘http://site.ext/register/localId’. This field has to be
filled in two different way depending on the type of item:

 The internal items will specify the uriname (e.g.
activityCodeValue);

 The external items will specify the URL pointing to
the external resource. The URI shall be resolvable
through an HTTP request (e.g.
http://someRegistry/someRegister/activityCodeVal
ue).

ParentLocalId This is the reference to the parent item

CollectionLocalId This is the reference to the collection. If this field is set then
an item is part of a collection.

Language
(mandatory)

The language of this item. If there is multiple language for
each item, the row has to be duplicated, hanging the
language related fields.

Label (mandatory) This contains the label of the items

Definition This contains the definition of the system

Description This contains the description of the items

Status
(mandatory)

This contains the status related to the current item. More
details about the code to be used in this field can be found
in Table 2.

Re3gistry Software documentation
Understanding the Re3gistry

25

Comment A textual comment for the change log stored by the system
for each action.

Additional
fields

(custom attribute/
header
descriptor)

The custom attribute headers define the properties of the
additional fields.
Custom attributes must be added to the CSV file after the
standard fields and have the following format:
*custom_attribute_name[required,
multivalue,coded,foreignkey]
The value in the square parenthesis is a Boolean value, and
can be ‘t’ (for true) of ‘f’ (for false): e.g. *extensibility[t,f,f,f].
The meaning for each of the properties set in the square
parenthesis is described in the following rows.

Required This indicates that the custom attribute is required. The
whole data rows in the CSV must have this value in order to
be imported.

Multivalue This indicates that this custom attribute could have more
than one value. The values are separated by comma. E.g.
...|ab,cd,ef

Coded If this property is set to true, the custom attribute takes its
values from a list of values defined in a specific database
table. More details about the information model can be
found in Annex A (This feature is not implemented but is
foreseen in the future).

Foreignkey If this property is set to true, the value in this field is
a LocalId of another item in the register. The name of the
custom attribute has to be the name of the itemclass
referenced.

Figure 7: Addition CSV example - internal items

Import.zip -> ApplicationSchema/addition.csv

LocalId|ParentLocalId|CollectionLocalId|Language|Label|Definition|Descriptio

n|Status|Comment|*Theme[t,f,f,t]|*UMLname[t,f,f,f]

sd|||en|Species Distribution|||valid||sd|SpeciesDistribution

sd|||fr|Répartition Des Espèces|||valid||sd|SpeciesDistribution

This example contains an addition of the item ‘sd’ in the ApplicationSchema

register. There is the mandatory header line and two rows (the ‘sd’ item in

two languages - one row for English language and the other for French).

In the example in Figure 7, the custom attribute (name: Theme) is defined as foreign key. In this
case, the name of the custom attribute (in the descriptor line – the first line of the csv) shall be
exactly the name of the itemclass related to the item specified as value. The value of the custom

https://ies-svn.jrc.ec.europa.eu/projects/registry-development/wiki/Re3gistry_1_2_documentation#_Annex_A

Re3gistry Software documentation
Understanding the Re3gistry

26

attribute shall be the LocalId of the referenced element. Only items that are not part of a collection
(with the CollectionId field empty) can be pointed by a custom attribute.

If the item is externally governed, the only mandatory information to be provided is its URI. The
other information are optional

Figure 8: Addition CSV example - external items

Import.zip -> ApplicationSchema/addition.csv

LocalId|ParentLocalId|CollectionLocalId|Language|Label|Definition|Description

|Status|Comment|*Theme[t,f,f,t]|*UMLname[t,f,f,f]

sd|||en|Species Distribution|||valid||sd|SpeciesDistribution

http://someRegistry/someRegister/abc||||||||||

http://someRegistry/someRegister/def|||en|def||||||

2.2.3.1.3.2. Clarification

This action allows editing and correcting the register items.

Every time a clarification action is performed, the version of the item is increased.

This action data file, shall be filled only with the fields that need to be updated (apart from the
LocalId and the language to identify every item). Only the filled fields will be updated; the field
left blank in the action file, will not be updated, and will remain as it is in the register.

The clarification action cannot change the collection of an item. Nevertheless, the clarification CSV
file contains the CollectionLocalId field in order to unambiguously identify the item. Actually,
in the same data file, different items that are part of a collection may have the same LocalId but
different CollectionLocalId. In the clarification (but also in the supersession, retirement and
invalidation) the item has to be identified in the data file by
its LocalId and CollectionLocalId (if available).

The clarification’s CSV file is very similar to the addition CSV file but it has not the status field.
The clarification CSV structure is described in Table 2 and example of how to fill it instead is
provided in Figure 9.

Table 2: CSV fields for the clarification data file

Type Code Description

Main fields LocalId (mandatory) The local identifier (id) is used to identify the item to be
updated

ParentLocalId

CollectionLocalId

Language
(mandatory)

The local identifier (id) is used to identify the language
representation of item to be updated

Label

Definition

Description

http://someregistry/someRegister/abc||||||||||

Re3gistry Software documentation
Understanding the Re3gistry

27

Status

Comment

Additional
fields

(custom attribute/
header descriptor)

In the clarification data file, all the custom attribute
related to the current itemclass shall be specified in the
first row as the addition CSV.

Figure 9: Clarification CSV file example

Import.zip -> ApplicationSchema/clarification.csv

LocalId|ParentLocalId|CollectionLocalId|Language|Label|Definition|Descriptio

n|Comment|*Theme[t,f,f,t]|*UMLname[t,f,f,f]

sd|||en|Species Distribution changed|||||changed custom attribute

sd|||fr|| Ajouter la définition en français ||||

This example contains a clarification CVS file for the ApplicationSchema

itemclass (linked to the ApplicationSchema register). The file contains only

the ‘sd’. Item, to be modified in the 2 different language:

English: the label and the ‘UMLname’ custom attribute are edited;

French: the definition is added

2.2.3.1.3.3. Supersession

This action allows superseding an item. The supersession CSV file format is quite different from
the previous two because it only requires the reference to the item to be superseded and to the
successor item(s).

The structure of the supersession CSV is shown in Table 3 and example of its usage is available in
Figure 10.

The successor item(s) shall be available in the database or shall be present in the addition csv of
same itemclass data file containing the supersession csv.

Table 3: CSV fields for the supersession data file

Code Description

SupersededLocalId
(mandatory)

The local identifier (id) is used to identify the item to be
superseded

SupersededCollectionLocalId The optional collection local identifier (id) is used to identify the
item to be superseded (to be provided if the item is part of a
collection)

NewLocalId (mandatory) The local identifier (id) is used to identify the successor item(s).
The identifier can be a single identifier or multiple identifier
separated by comma (e.g. ac,mf).

Re3gistry Software documentation
Understanding the Re3gistry

28

In case of multiple successor elements that are part of a
collection, all of the specified successor shall belong to the same
CollectionId.
If the successor belong from different Collection, one row for
each collection shall be specified in the supersede file.

NewCollectionLocalId The optional collection local identifier (id) is used to identify the
successor item (to be provided if the item is part of a collection).

Comment A textual comment for the change log stored by the system for
each action.

Figure 10: Example of supersession CSV file

Import.zip -> ApplicationSchema/supersession.csv

SupersededLocalId|SupersededCollectionLocalId|NewLocalId|NewCollectionLocalI

d|Comment

sd||ad||this is a comment

mf||ad,ac||this is a comment

This example contains a supersession CSV file for the ApplicationSchema

itemclass (linked to the ApplicationSchema register). The file contains two

supersessions:

the ‘sd’ item, with successor item ‘ad’.

the ‘mf’ item, with successor items ‘ad’,’ac’.

2.2.3.1.3.4. Invalidation

This action allows invalidating an item. The invalidation CSV file format is almost the same as the
supersession CSV file, but there is the ‘recursive’ flag too (explained in Table 4), because it only
requires the reference to the item to be superseded and to the successor item(s). See in Figure
11, an example of its usage.

The successor item(s) shall be available in the database or shall be present in the addition csv of
same itemclass data file containing the supersession csv.

Table 4: CSV fields for the invalidation data file

Code Description

LocalId (mandatory) The local identifier (id) is used to identify the item to be invalidated

CollectionLocalId The optional collection local identifier (id) is used to identify the
item to be invalidated (to be provided if the item is part of a
collection)

SuccessorLocalId
(mandatory)

The local identifier (id) is used to identify the successor item(s).
The identifier can be a single identifier or multiple identifier
separated by comma (e.g. ac,mf).
In case of multiple successor elements that are part of a collection,
all of the specified successor shall belong to the same CollectionId.

Re3gistry Software documentation
Understanding the Re3gistry

29

If the successor belong from different Collection, one row for each
collection shall be specified in the supersede file.

SuccessorCollectionLocalId The optional collection local identifier (id) is used to identify the
successor item (to be provided if the item is part of a collection)

Recursive This field tell the system to recursively invalidate any children
items or linked items to the invalidated item. To set this flag put
the word ‘true’ in the field, otherwise leave it blank.

Comment A textual comment for the change log stored by the system for
each action.

Figure 11: Supersession CSV example

Import.zip -> ApplicationSchema/invalidation.csv

LocalId|CollectionLocalId|SuccessorLocalId|SuccessorCollectionLocalId|Recurs

ive|Comment

sd||ad|||this is a comment

so||ac,mf||true|this is a comment

This example contains an invalidation CVS file for the ApplicationSchema

itemclass (linked to the ApplicationSchema register). The file contains two

invalidations:

the ‘sd’ item, with the successor item ‘ad’. This is not recursive and

contains also a comment.

the ‘so’ item, with the successor items ‘ac’ and ‘mf’. This is recursive and

contains a comment.

2.2.3.1.3.5. Retirement

This action allows retiring an item. The supersession CSV file format is the simplest one. It only
requires the reference to the item to be retired plus a recursive flag (The fields for this action are
explained in Table 5 and an example of its usage in Figure 12).

Table 5: CSV fields for the retirement data file

Code Description

LocalId
(mandatory)

The local identifier (id) is used to identify the item to be retired

CollectionLocalId The optional collection local identifier (id) is used to identify the item to be
retired (to be provided if the item is part of a collection)

Recursive This field tell the system to recursively retire any children items or linked
items to the retired item. To set this flag put the word ‘true’ in the field,
otherwise leave it blank.

Comment A textual comment for the change log stored by the system for each action.

Re3gistry Software documentation
Understanding the Re3gistry

30

Figure 12: Retirement CSV file example

Import.zip -> ApplicationSchema/retirement.csv

LocalId|CollectionLocalId|Recursive|Comment

sd|||this is a retirement

so||true|this is a retirement

 This example contains a retirement CSV file for the ApplicationSchema

itemclass (linked to the ApplicationSchema register). The file contains two

item, to be retired:

the ‘sd’ item. This is not recursive and contains also a comment.

the ‘so’ item. This is recursive and contains a comment

2.2.3.2. Data analyser

The data analyser component performs a number of testing in order to make sure that the data
file contains consistent data.

There are two type of messages raised by the analyser:

 Errors: these are locking problems; the data file shall be corrected before the system can
continue its work.

 Warnings: these are non-locking problems; the user is notified about the problem but the
import can continue by setting the ‘ignore warning’ flag available in the web interface.

In Table 6, there is a list of the inspections performed by the data analyser.

Table 6: Analyser check and report message type by action

Addition Clarification Supersession Invalidation Retirement

Item already in the database Error - - - -

Item not available in the
database

- Error Error Error Error

Custom attribute (with
foreign key flag true)
pointing to an item not
available in the database nor
in the current addition file

Error Error - - -

Custom attribute (with
foreign key flag true)
pointing to an item not valid

Warning Warning - - -

Item pointing to a parent
not available in the database
nor in the current addition
file

Error Error - - -

Item pointing to a parent
not valid

Warning Warning - - -

Re3gistry Software documentation
Understanding the Re3gistry

31

Item pointing to a collection
not available in the database
nor in the current addition
file

Error - - - -

Item pointing to a collection
not valid

Warning - - - -

Item pointing to a successor
not available in the database
nor in the current addition
file

- - Error Error -

Item pointing to a successor
not valid

- - Warning Warning -

The item’s operating
language is not available

Error - - - -

The item’s language is not in
the list of supported
language

Error - - - -

The item has collection - - Error Error Error

The item has child - - Error Error Error

The item has links (pointed
by a custom attribute as
foreign key)

- - Error Error Error

The system will behave differently according to the situation found:

 If the system finds any errors or warnings, the procedure is stopped
 In case the procedure produces both errors and warnings, the system will lock even if the

‘ignore warning’ flag is set.

In any of the above mentioned situations and also when the procedure ends successfully, an email
notification will be sent to the user. In case of errors or warning, an attachment will be
accompanied in the email to help the user fixing the found issues.

2.2.3.3. Data storage

The data storage component saves the data into the database and performs by performing the
operations described in the CSV files.

The data storage starts only after the data analyser reports that the data to process is fine.

If something goes wrong during the storage process, the user will receive an email with the
detailed list of errors, and the import will be roll-backed.

Re3gistry Software documentation
Understanding the Re3gistry

32

2.2.4. Staticiser module

2.2.4.1. Staticisation process

The ‘Staticisation’ component is responsible for exporting into the file system the contents stored
in the database through the data management system procedures.

The system uses XSLT transformations files to provide the registry contents in the requested
formats.

To do so, the staticiser creates firstly the master xml files, containing a structured export of the
items stored in the database, that will be used by the different XSLT files, to produce the different
files.

The ‘custom’ folder, will contain all the files produced by the XSLT files. See section on the
configuration of the Re3gistryStaticizer.properties

2.2.4.2. XSLT

The transformation system based on XSLT is flexible to allow the user customisation by defining
the different formats to use and the structure to obtain for them.

The XSLT files translate the information contained in the master xml files to the customised file
formats. There are three types of master XML files:

 Registry: describing the registry
 Register: describing a registers
 Item: describing the items

The XSLT files shall be contained in a folder specified in the system properties file
(Re3gistryStaticizer.properties - properties files described at 3.5.2).

Each of the folders used for the XSLT transformation shall contain one XSLT file for each registry,
one for each register and one for each itemclass, as illustrated in Figure 13 and Figure 14.

Figure 13: XSLT transformation for XML

<itemclass_uriname>.<format>.xsl - items

<register_uriname>.<format>.xsl - register

<registry_uriname>.<format>.xsl - registry

Re3gistry Software documentation
Understanding the Re3gistry

33

Figure 14: XSLT transformations files for the custom XML format (contained in the xml folder)

2.2.4.3. Static element localisation

To handle the localisation of some static elements, such as some common parts of the formats,
there is a language mapping file. The ‘gui-languages’ folder contains <language_code>.xml
files, one for each language supported by the system, containing the item keys (See Figure 15)
used by the XSLT files for any static string not available in the database (See Figure 16).

Figure 15: GUI-languages folder, French file structure

<guilanguage languagecode="fr">

<item key="feedback">Retour d'utilisation</item>

<item key="powered-by">Construit avec</item>

<item key="about">A propos de</item>

<item key="contact">Nous contacter</item>

. . . .

</guilanguage>

Figure 16: Usage example. Place this piece of code to retrieve the translated word in the file.

<xsl:value-of select="$languagefile/guilanguage/item[@key='feedback']"/>

The $languagefile variable is the path of the document containing the

translations and it is defined at the beginning of the xsl file. An example

is provided below:

<xsl:variable name="language" select="item/language/isocode"/>

Re3gistry Software documentation
Understanding the Re3gistry

34

<xsl:variable name="languagefile" select="document(concat('../gui-

languages/',$language,'.xml'))" />

2.2.4.4. Additional information

The staticiser is responsible as well for the creation of additional files that handle the content-
negotiation (var files) and the Apache solr indexing.

The var generator generates the .var index configuration files needed to set-up the Apache
content-negotiation feature. This allows the user to use the content-negotiation approach
explained in section 5.2.1 RESTful web service .

The solr export will produce the files to be imported by the Apache solr application (one file for
each item, containing all the languages). The solr XSLT transformation produces files compliant
with the Apache solr system.

2.2.5. Deployer module

The deployer module is responsible for deploying the static files produced by the staticization
system (See 2.2.4 Staticiser module) to the target production server.

This is needed if the production server is in a different machine, or if the files in the same machine
need to be moved to another place in the same system.

The module allows to automatically take the set of static files produced and move them to the
configured target place.

To see how to configure the deployer module refer to section 3.5.2 Modifying the configuration
files.

Re3gistry Software documentation
Understanding the Re3gistry

35

2.3. Re3gistry administration panel

Since version 1.0, the Re3gistry provides a simplified interface, the ‘Re3gistry administration
panel’, to allow the user easily managing the registry contents, without the need of understanding
the underlying complexity of modules interconnection.

To understand in which step of the procedure the system is , there is a list of procedure status that
express the progress reached by the Re3gistry when handling the imported data. In Table 7, are
shown the different possible values for the procedure status.

Table 7: Procedure statuses

Checking
data

The system is checking the data file format and analysing the data file
consistency.

Storing data The data has been checked; the system is storing the data to the database

Writing files The data has been stored to the database; the system is writing the static file
to the file system

Completed The files has been written to the file system and they are ready for the
deployment

Imported This status indicates that the data import has successfully completed but the
export to the static files has not been done (or the export went wrong). In this
case, the export can be started manually with the specific button in the UI.

Deployed The file has been deployed to the web server

Failed Something went wrong during one of the data procedure step. In this case, a
detailed error description is sent to the user's mail

To understand how to use step-by-step the administration panel, see section 4.1 Accessing the
Re3gistry administration panel.

Re3gistry Software documentation
Installing the Re3gistry

36

3. Installing the Re3gistry

This section will guide the user installing Re3gistry and using it for the first time through ready-to-
use examples.

3.1. System requirements

To install the Re3gistry components the following programs need to be previously installed in the
user’s computer.

 Java SE Development Kit (JDK) 7 or higher6
 Apache Tomcat 7 or higher7
 PostgreSQL 9.2 or higher8
 ECAS for Tomcat (provided within the package) [optional - to be used only if the ECAS

authentication method is selected].

3.2. Package details

The software package, available for its download in the Re3gistry space of JoinUp9, includes: binary
files (ready to use application), source files, configuration examples and other required files.

Figure 17: Structure of the Re3gistry package

The structure of the package folder is as follows:

 binaries: containing the Re3gistry software binary files (ready to use application).

6 http://www.oracle.com/technetwork/java/javase/downloads/index.html
7 http://tomcat.apache.org/
8 https://www.postgresql.org/download/
9 https://joinup.ec.europa.eu/software/re3gistry/release/all

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://tomcat.apache.org/
https://www.postgresql.org/download/
https://joinup.ec.europa.eu/software/re3gistry/release/all

Re3gistry Software documentation
Installing the Re3gistry

37

 ECAS-files: containing the ECAS authentication libraries and other required files. These
files will be used only if the ECAS authentication method is chosen during the Re3gistry
configuration.

 examples: containing the example files needed to install, initialise and run the Re3gistry
software as well as to create an example web service instance. Two full examples are
provided within the folder:

o inspire-example: containing a sample of the contents available in the INSPIRE
registry service,

o neutral-example: containing more generic registers related to countries and
companies.

To know more about the examples offered, refer to the readme.md file inside the example's folder.

 source: containing the source files of the Re3gistry software.
 webapp: containing the PHP web application that can be used to serve data files produced

by the Re3gistry software.

3.3. Important notes

The files contained in the ‘examples’ folder, encloses a couple of ready-to-use examples to help
the user quickly setting up and running its Re3gistry instance. To proceed with the installation
explained next, the user will need to select one of them and make sure he always takes the
configuration files relative to the example chosen, otherwise the installation will not work.

3.4. Database configuration

The database initialisation script will create the database structure and it will populate its tables
with the registry information and its registers contents. The database example scripts are available
within each of the different example files provided in the examples folder.

3.4.1. Creating a new database

Before executing the scripts, you need to create a new database in PostgreSQL that will store the
registry contents.

3.4.2. Running the SQL scripts to create tables and populating
them

Select one of the examples provided and follow the path until reaching its database subfolder:

Path: <root_folder>/Project_package_1.X/examples/<inspire-example|neutral-
example>/database

Re3gistry Software documentation
Installing the Re3gistry

38

The scripts contained in the ‘database’ subfolder are four and they need to be executed in the
following order:

1 create-table.sql
2 database-initialization.sql
3 database-localization.sql

The drop-table.sql will be solely used if there is a need of resetting the database, by removing
the whole tables with its contents. Only if you are working on an existing database that needs to
be cleaned up, it will need to be executed in first place.

These scripts can be executed either by using the command line or simply by using a graphic user
interface (GUI) such as pgAdminIII usually included with the PostgresSQL installation.

To run the script from pgAdmin, make sure you are connected to the target database, open the
‘Query tool’ (in the menu go to ‘Tools’ > ‘Query tool’ or Ctrl-E).

From the ‘Query tool’ window, Use the ‘Open file’ button to select the respective SQL file to
run, and execute it by clicking on the ‘Execute query’ button. (In the menu go to ‘Query’ >

‘Execute’ or F5). Once the script has been processed, continue by launching the following script
(See Figure 18).

Figure 18: Executing the create-tables.sql script from pgAdminIII

Re3gistry Software documentation
Installing the Re3gistry

39

Once the three scripts have been launched you should have in the recently created database 19
tables already populated (See Figure 19).

Figure 19: Nineteen tables created and populated

To run them through the shell, follow the following example.

psql -f <example-file.sql> <targetdatabase>

This command may need additional parameters, depending on the system configuration (e.g.
credentials, host …).

3.5. Configuring the Re3gistry

This section explains how to install and get started with Re3gistry software, that is, the part of the
package that produces and manages the contents. Those contents can optionally be served
through the proposed webapp. To know more on that, please refer to section 0 on

Re3gistry Software documentation
Installing the Re3gistry

40

Serving the Re3gistry contents.

3.5.1. Move the binaries folder to Tomcat’s webapp folder

Go to the Re3gistry package, inside the ‘binaries’ folder select and copy the ‘Re3gistry-1.X’
subfolder and paste it within the Apache Tomcat’s ‘webapps’ folder.

Figure 20: Usual Tomcat installation file structure

Before moving the project’s folder, make sure that the Apache Tomcat server is not running.

To stop it, there is a ‘shutdown’ script in the tomcat’s ‘bin’ folder (depending on your operative
system: Windows user, shutdown.bat; Linux users, shutdown.sh).

3.5.2. Modifying the configuration files

Once the binary files have been located in Tomcat, several configurations files need to be modified
by the user to set up its Re3gistry instance. More specifically, a set of properties must to be
updated accordingly to the user’s environment and set to fit the user´s preferences.

The files to modify are the following:

 Application.properties
 logcfg.xml
 RegistryData.properties
 RegistryStaticizer.properties
 RegistryDeployer.properties

Re3gistry Software documentation
Installing the Re3gistry

41

Note: The properties to be changed are marked with the placeholder ‘_<propertyname>_’, that is
they appear among underscore symbols. Usually, tips on how to modify the settings are given
directly in the configuration files in the form of comments.

Some examples are illustrating the placeholders are:

DBADDRES

USERNAME.

3.5.2.1. persistence.xml

Path : <root_Tomcat_folder>/webapps/Re3gistry-1.X/WEB-INF/classes/META-INF

This file provides the configuration to connect to the database. The parameters to modify are:

javax.persistence.jdbc.url URL of the database including port number and target
database name
(e.g. “jdbc:postgresql://localhost:5432/registry”).

javax.persistence.jdbc.user User of the database.

javax.persistence.jdbc.password Password of the database.

3.5.2.2. Application.properties

Path : <root_Tomcat_folder>/webapps/Re3gistry-1.X/WEB-INF/classes /configurations

This file manages the general properties of the system as the contact details, the language
preferences or the authentication methods.

To know more on how to configure the authentication methods, please go to section 3.5.3 Setting
up the authentication method

The parameters to modify are:

application.language.available The available language for the interface, specified the by
the 2 letter ISO 639-1 language code. If more than one,
separate them with a hyphen symbol (-).

application.language.available._xx_ If different languages are available there should be an
entry for each one followed by the value of the label that
will appear in the language selector

application.contact The e-mail address of the system’s contact.

mail.sender The e-mail address of the sender for the system’s emails.

mail.recipient The e-mail address for the default recipient.

mail.smtp.host The server host SMTP email.

3.5.2.3. logcfg.xml

Re3gistry Software documentation
Installing the Re3gistry

42

Path : <root_Tomcat_folder>/webapps/Re3gistry-1.X/WEB-INF/classes/configurations

This file contains the settings regarding the logging system.

Log files are useful to monitor the activity of the system and particularly to discover potential
errors or warnings and its causes.

The user must update every ‘_LOGPATH_’ placeholder with the path where he wants the log files
to be stored. More specifically, there are five types of log files that the system produces. (The
procedures in charge of producing them are known as ‘log appender’)

 ‘Re3gistry’ appender produces the Re3gistry.log file
 ‘Re3gistryData’ appender produces Re3gistryData.log file
 ‘Re3gistryStaticizer’ appender produces Re3gistryStaticizer.log file
 ‘Re3gistryDeployer’ appender produces Re3gistryDeployer.log file
 Finally, the ‘Default’ appender produces the Complete.log file. It contains as the name

indicates, the full logging information coming from the rest of the log files.

3.5.2.4. Re3gistryData.properties

Path : <root_Tomcat_folder>/webapps/Re3gistry-1.X/WEB-
INF/classes/configurations/modules

This file contains the settings regarding the data management. The properties to update are:

data.customtempfolder The folder used to save the temporary data files. If this property is
left blank, a default folder will be created directly within Tomcat’s
webapp folder.

data.operatinglanguage Code of the ‘master’ language of the data contents according to the

2-letter ISO 639-1 language code.
data.supportedlanguage Code(s) representing the data languages supported and handled by

the system according to the 2-letter ISO 639-1 language code

Note: If you plan to represent the registry contents in different languages, make sure they all appear
in the data.supportedlanguage property, otherwise you might find errors when trying to import
data.

3.5.2.5. Re3gistryStaticizer.properties

Path : <root_Tomcat_folder>/webapps /Re3gistry-1.X/WEB-
INF/classes/configurations/modules

This file contains the configurations to allow the system producing the static files from the data
available in the database for every requested format. In addition, this file contains the settings to
produce solr index data that can optionally be used to power a search engine.

Re3gistry Software documentation
Installing the Re3gistry

43

The main properties to be updated here are:

staticizer.custom.folder.path Folder where the staticised and converted files will be saved.

xml.formats.list List of formats that will be handled by the system indicated
through the extension names (separated by comma if more than
one).

staticizer.formats.path Folder containing XSLT transformation files to process the data
conversion in multiple formats.
The user must make sure that in the given path there are as
many folders as formats to be produced accordingly to the
values set in the xml.formats.list property. The folders must
be named exactly as the indicated labels in the property
xml.formats.list and they must contain the XSLT files with the
transformation rules.

staticizer.solr.format Folder name where the solr data file will be saved

Note: to help the user using and running for the first time the Re3gistry we suggest to copy the XSL
folder of any of the examples coming in the software package /examples/<inspire-example|
neutral-example>/xsl folder and pasting it into the XSL folder created.

3.5.2.6. Re3gistryDeployer.properties [Optional]

Path : <root_Tomcat_folder>/webapps /Re3gistry-1.X/WEB-
INF/classes/configurations/modules

This configuration file facilitates the automatic creation of an RSS file showing the changes
occurred in the registry contents and additionally it simplifies file management tasks, moving
programmatically files across directories.

The main properties to modify are:

deploy.script.folder Folder containing the deploy script. By default, two template scripts
(to be launched either on Windows or On Linux environments) are
already included within the folder webapps/Re3gistry-1.X/WEB-
INF/classes.
This property should be updated if the user decides to locate the script
in another path. Moreover, the scripts must be edited accordingly to
the user’s environment.

deploy.rss.file Path to the RSS template file used by deployment procedure. The
news.en.xml file, available in any of the given examples folder within
the deployer subfolder, offers the base schema to produce the real RSS
.

deploy.rss.targetfolder Folder where the produced RSS will be stored.

Re3gistry Software documentation
Installing the Re3gistry

44

deploy.rss.baseuri URI to be used by the deployment’s procedure when producing the
RSS file. Normally the base URI corresponds to registry’s homepage
URL (e.g. http://localhost/registry)

3.5.3. Setting up the authentication method

3.5.3.1. Available authentication methods

The Re3gistry allows choosing among two authentication methods: Apache SHIRO and the
European Commission Authentication Service website known as ECAS.

 The Apache SHIRO is suitable for any environment. SHIRO allows the connection of
different authentication method. The Re3gistry has implemented the ‘static’ user
authentication, which is managed by a simple configuration file containing the full list of
users.

 The ECAS authentication method instead, can only be used either in domains trusted by
the ECAS administrators (that is in European Commission domains) or in ‘localhost’.

To learn how to attach other authentication method than the ‘static’ one, read the own Apache
SHIRO documentation.

3.5.3.2. Choosing and implementing the authentication method

The authentication method is handled by two configuration files.

3.5.3.2.1. Application.properties

Path : <root_Tomcat_folder>/webapps /Re3gistry-1.X/WEB-INF/classes
/configurations

The Application.properties file includes a parameter that allows switching between ECAS and
SHIRO. By default, the authentication method is set to Apache SHIRO. (See Figure 21)

Figure 21: Default authentication method

Login type: SHIRO | ECAS

application.LoginType=SHIRO

To change of authentication method, just modify the value with the proper string as indicated in
Figure 23.

Note: If ECAS method is chosen, special Tomcat libraries have to be installed.

3.5.3.2.2. web.xml

Path : <root_Tomcat_folder>/webapps /Re3gistry-1.X/WEB-INF/

Re3gistry Software documentation
Installing the Re3gistry

45

The web.xml file handles among other things, the authentication method settings. It must be
modified accordingly to the authentication method previously chosen in the
Application.properties file. By default, SHIRO method is set, to change to ECAS, the SHIRO
related lines must be commented while the ECAS uncommented.

To help the user in this step, some informative comments in the web.xml file have been added to
highlight when SHIRO and ECAS related configurations lines begin and end.

For example: To go for ECAS method, the text contained between the following lines <!--SHIRO
authentication configs--> and <!--END SHIRO authentication configs--> should be
commented, that is enclosed between ‘<!—’and’ -->‘ symbols.

3.5.4. Adding users to SHIRO

Path : <root_Tomcat_folder>/webapps /Re3gistry-1.X/WEB-INF/shiro.ini

The Re3gistry implements SHIRO through the Static File authentication mode. This file, named
shiro.ini contains the user(s) that are allowed to access the system together with their
passwords and roles.

To add or modify a user, it is enough to go to the [users] section of the file, and add or modify
the line with its username, password and role type information.

The user name can be either a name or an email address (See Figure 22).

Figure 22: Shiro.ini users section

[users]

admin@example.eu = admin, ROLE_ADMIN

user1@example.eu = password1, ROLE_ADMIN

To use the HTTPS protocol update the /login property in the section [urls] as follows:

/login = ssl[8443],authc

If the SSL configuration is chosen, make sure Tomcat is properly configured to support HTTPS.

Re3gistry Software documentation
Using the Re3gistry

46

4. Using the Re3gistry

4.1. Accessing the Re3gistry administration panel

Once the user has completed the installation steps covered in section 3, he just needs to start the
Tomcat Web Application Container and access the Re3gistry through any web browser.

There are different ways of starting Tomcat, depending on the installation, on the O.S. and other
configurations. Usually the tomcat can be easily started using the ‘startup’ (Windows users:
startup.bat, Linux users: startup.sh) script available in the Tomcat’s ‘bin’
(<tomcat_installation_folder>/apache-tomcat.8.x.xx/bin/).

The URL to access the instance usually, if not configured diversely, should follow this pattern:

http://localhost:[tomcat_port]/[Name_Of_Webapp]

 By default, Tomcat works on port 8080, so in common installations, and if the webapp name has
been maintained as ‘Re3gistry-1.X’ (folder name appearing within the TOMCAT webapps folder),
typing http://localhost:8080/Re3gistry-1.X should redirect to the authentication page.

Accessing the Re3gistry’s URL should take you to a web page asking for authentication details (See
Figure 23).

Figure 23: Authentication page to access the Re3gistry software administration panel

Entering the user authentication details previously set in the shiro.ini file should give the user
access to the Re3gistry Data management system page (See Figure 24)

http://localhost:8080/Re3gistry

Re3gistry Software documentation
Using the Re3gistry

47

Figure 24: Data management system page

4.2. Importing data

To start the import procedure, click on the ‘Add data file’ button, a pop window will appear to
guide you in the data file ‘importing’ phase (See Figure 25).

Figure 25: ‘Add data file’ window

Pressing the ‘Load data file’ option, will let you browse your computer´ directories to pick the
target data folder.

Re3gistry Software documentation
Using the Re3gistry

48

Next, it is recommendable to write a brief comment describing the data that is on the point of
being imported, that will allow you easily identify the procedure launched in the case you run
others, and finally press ‘Start procedure’.

Optionally, you can check the ‘ignore warning’ box in case you do not want the system to check
the correctness of the source data structure before inserting it in the database. If instead, you
prefer to validate the correctness of your data leave the field unchecked.

Refer to the section 2.2.3.2 on Data analyser to know the differences between errors and
warnings.

The data files to be loaded must be compressed in.zip format.

If you want to load an example file, go to the downloaded software package inside the data folder
relative to your chosen example.

Path: <root_folder>/Project_package_1.X/examples/<inspire-example|neutral-example>/data

Remember, if in the Database creation step you chose ‘neutral- example’, you should be taking
the file NeutralExampleV1.X.zip. If you want to change of example, you must clean the database
content and load its proper script (See section 3.4.2).

After starting the procedure, a new row will appear in in the data management system’s table with
the relative details to the launched procedure (See Figure 26).

Figure 26: Procedure details in the data management system panel

The status column in the table will change accordingly to the task being performed

This table contains the history of the procedures launched, together with the current running
procedure and eventual queued procedure. Once the procedure starts, the systems performs all
the data operations (import and export). See section 0

Re3gistry Software documentation
Using the Re3gistry

49

Re3gistry administration panel, to know the meaning of the possible status values.

Only one procedure can run per time. If the user adds a new data file while another procedure is
running, the newly added data file will be queued. The system will run the queued files once the
current running procedure has ended.

Once the procedure has started, the browser can be closed: the system will continue to run.

An email notification will be sent once the procedure ends; if it ends with problems, the list of
problems will be attached to the email.

The procedure may take a considerable amount of time, depending on the number of items to be
processed.

When finished, if no error has been encountered, the value of the ‘Status’ column should now
state ‘Imported’ and the option ‘Run Data Export’ in the last column (‘Action’ column) must
be available.

4.3. Exporting and converting data files

In case you want to run again the staticization process, you can use the ‘Run Data Export’
function. It will start exporting the information stored in the database in the requested formats
(See Re3gistryData.properties) without the need to re-import it. When the Status column value
passes from ‘Writing files ’to ‘Completed,’ it means that the static files have been properly
produced.

Note: Remember that the conversion across formats relies on XSLT files. If the user would like
additional formats, he will need to provide the needed transformations rules.

To check the output files, go to the path defined in the property
‘staticizer.custom.folder.path=‘of the Re3gistryStaticizer.properties in section 3.5.2).
Normally, if the name folder has not been altered, the files should be contained inside the custom
subfolder.

If you need the export of the whole data in the database, you can use the option ‘Run full export’

If you chose to export the ‘neutral-example’, you should have obtained a folder with a file
structure as shown in Figure 27.

Re3gistry Software documentation
Using the Re3gistry

50

Figure 27: Produced data in the ‘custom’ folder for the ‘neutral-example’

In general terms, the output files are organised in a way that every register has its own folder
(matching with the register name) with its belonging items enclosed in it. In the root of the custom
folder the registry description appears.

There could be multiple files related to a single item because of the different formats and
languages required. This can be identified [item_name].[language].[format]

4.4. Deploying the contents

4.4.1. Moving data from the Re3gistry software to the server

To make the user live easier, there is a script in the

webapps/Re3gistry-1.X/WEB-INF/classes path

that helps the user managing files across system. Namely, it allows moving programmatically the
recently ‘exported’ data to the webserver folders serving the contents coming from the ‘custom’
folder and using the indexed data too, coming from ‘solr’ folder.

To make it work properly, the user should open it and edit the file by defining the proper source
and target folders to be handled (See Figure 28).

Figure 28: Windows-deploy.bat contents

Note: To know more on how to configure the server continue reading the coming sections.

4.4.2. Creating a modification summary RSS feed

Re3gistry Software documentation
Using the Re3gistry

51

RSS feeds are useful to share the modifications occurred in the contents of the registry and keep
your audience informed of them.

The Re3gistry administration panel, has a ‘Deploy’ button that allows you to automatically create
or update (if already done) an RSS file through a Popup Window (See Figure 29).

Note: To perform this action you must modify the properties in the
Re3gistryDeployer.properties [Optional] file.

Figure 29: Popup window allowing creating or updating an RSS file

To check the output file, go to the path defined in the property ‘deploy.rss.targetfolder=‘of
the Re3gistryDeployer.properties (See Re3gistryDeployer.properties).

Re3gistry Software documentation
Serving the Re3gistry contents

52

5. Serving the Re3gistry contents

5.1. System requirements

To install the webapp included in the Re3gistry, the following programs need to be previously
installed in the user’s computer.

 Apache HTTPD10
 PHP 5.4 or higher11
 Apache solr 4.8.012

Once the step 4.3 Exporting and converting data files has been performed, the content is ready
to be served and shared.

The way the content will be shared, is up to the user. Nevertheless, the Re3gistry package
includes a ready to use web application (webapp) that could help the user providing a friendly
user interface to interact with the data.

The Re3gistry, produces a set of files organised to set up a web service providing access to the
registers. An important characteristic of the service is the possibility to provide the same
information in multiple formats and multiple languages. The service is implemented using the
content-negotiation approach.

The content-negotiation means that the server can provide automatically the correct file
language/format based on the parameters set in the http header which is sent in the http
request.

If a user prefers to use the classic way to accessing a specific file (request a specific
format/language using a direct URL), the system supports this approach too.

The file to be used in order to set up a web service can be found in the staticiser output folder as
configured in the file named Re3gistryStaticizer.properties .

5.2. Web service

The files produced by the Re3gistry can be used to provide the web service in two ways:

 a RESTful web service which adopts a content-negotiation approach for serving the
resource or,

10 https://httpd.apache.org/download.cgi
11 http://php.net/downloads.php
12 http://www.apache.org/dyn/closer.lua/lucene/solr/6.1.0

https://httpd.apache.org/download.cgi
http://php.net/downloads.php
http://www.apache.org/dyn/closer.lua/lucene/solr/6.1.0

Re3gistry Software documentation
Serving the Re3gistry contents

53

 a standard web service, which uses the resource name in order to access the specific
resources.

5.2.1. RESTful web service

This web service is implemented using the Apache HTTPD web server and its content-negotiation
capabilities.

The resource is accessed using the standard RESTful notation. In Table 8 there are some examples
illustrating how to access different resources in Re3gistry webapp.

Table 8: RESTful URL example

URL Use

http://base_uri/register_uriname
http://base_uri/register_uriname/item_uriname
http://base_uri/register_uriname/collection_uriname/item_uriname

Used to access a register, an
item or an item collection

http://inspire.ec.europa.eu/themes Used to access the INSPIRE
theme’s register

http://inspire.ec.europa.eu/applicationschema/ad Used to access a specific
application schema

http://inspire.ec.europa.eu/codelist/ActiveWellTypeValue/decontami
nation/

Used to access a specific
value in the code list

To ask for a specific file format or language, the HTTP request should have the http header set. If
no header is set, the web service returns (by default) the xml format in English.

There are different ways of setting the HTTP header in the requests. If the request to a resource is
done through the browser, the HTTP header can be set using a specific plugin for that browser.
Look at Figure 30 to see how the parameters can be set.

Search for ‘HTTP header’ in the browser’s component store. If the request is done
programmatically, refer to the guide of the programming language used.

Figure 30: Example of content-negotiation parameters

Accept application/xml

Accept-Language en

Accept application/atom

Accept-Language fr

To enable the content-negotiation capabilities, the Apache HTTPD server has to be configured.

Re3gistry Software documentation
Serving the Re3gistry contents

54

Each content folder needs a configuration file that addresses the HTTPD server to serve the right
file. This file is a file with a .var extension (for example, cn.var), see Figure 31 to understand
how it looks like.

The staticiser module produces this file automatically.

Figure 31: .var file example

URI: ICDValue.en.atom

Content-language: en, en-GB, en-US, en-EN

Content-type: application/atom+xml

URI: ICDValue.en.html

Content-language: en,en-GB,en-US,en-AU,en-NZ; q=1.0

Content-type: text/html

URI: ICDValue.en.json

Content-language: en, en-GB, en-US, en-EN

Content-type: application/json

URI: ICDValue.en.xml

Content-language: en, en-GB, en-US, en-EN

Content-type: application/xml

For detailed information on how to configure Apache HTTPD and content-negotiation, refer to the
Apache HTTPD guide [APACHE-CN].

5.2.2. Standard web service

To access the resources without using the content negotiation approach, the common standard
URL-based request can be used.

Figure 32: Web service requests - Direct URL example

http://inspire.ec.europa.eu/codelist/codelist.en.html

http://inspire.ec.europa.eu/themes/themes.de.atom

http://inspire.ec.europa.eu/Applicationschema/ad.fr.json

http://inspire.ec.europa.eu/codelist/AgeBy5YearsValue/41039.it.xml

http://inspire.ec.europa.eu/codelist/Article17CountingUnitValue/reference/Ar

ticle17CountingUnitValue.fr.rdf

5.3. Installing the Re3gistry webapp

Re3gistry Software documentation
Serving the Re3gistry contents

55

5.3.1. Copy the sample web application folder

Browse the Re3gistry software package and copy the webapp folder available at:

Path: <root_folder>/Project_package_1.X/webapp

Paste the copied contents into the folder storing the exported data, as shown in Figure 33.

Remember this path given to the ‘staticizer.custom.folder.path=‘of the
Re3gistryStaticizer.properties configuration file

Figure 33: Paste the webapp folder into the exported data folder

5.3.2. Setting the web application

The webapp is built in php programing language, for this reason, your server should have installed
php v5.4 or higher.

The webapp folder shall be put in the same folder containing the files exported from the Re3gistry
during the exporting phase. See how in Figure 34.

To make the HTML webapp work, at least the JSON export of the data managed by the Re3gistry
is needed. An example file system structure is shown below.

Figure 34: Proposed structure to locate he webapp files and the data files

/var/www/your_app/data/ -> This folder contains all of the files produced by

the Re3gistry software.

/var/www/your_app/data/webapp -> This folder contains the webapp.

5.3.3. Configuration

To webapp needs as well a couple of files to be modified and included in the webapp folder. Those
are:

 conf.php
 logger.xml

Re3gistry Software documentation
Serving the Re3gistry contents

56

5.3.3.1. conf.php

Path :/webapp/app_data/

This file manages the basic configuration of the web application: from the web application URL
itself, to the languages available, to the number of items to be showed per page.

With the help of a notepad++ program, open the file to update the properties according to your
needs and save them as shown in Figure 36.

The important properties to be configured are listed and explained in Figure 35 :

Figure 35: Properties in the conf.php file

define('APPLICATION_ROOT','/var/www/INSPIRERGD/data/webapp/'); // This is

the path of the root folder of the webapp.

define('APPLICATION_ROOT_URL','http://inspire.ec.europa.eu/registry/'); //

This is the root URL of the rgistry webapp.

define('CDN_URL','http://inspire.ec.europa.eu/cdn/latest/'); // This is the

URL of the CDN containing all of the style and script for the website.

Currently we provide the INSPIRE CND as an example included in the package.

You can start from that to customize your User Interface.

The other important properties are located at the end of the config.php file

after the line "/*** Service configs ***/". Here you have to basically

change the URL of each properties according to your needs. For example, if

your URL starts with http://www.example.com, you have to replace all of

the http://isnpire.ec.europa.eu strings with http://www.example.com. The

reason to have one properties for each element is that in some advanced

installation, there can be different URL for each of the think in the

system.

Detailed information in form of comments will help the user configuring the webapp to his
environment.

Figure 36: conf.php file opened in Notepad++

5.3.3.2. logger.xml

Path : /webapp/app_data/

http://inspire.ec.europa.eu/registry/');
http://inspire.ec.europa.eu/cdn/latest/');
http://www.example.com/
http://isnpire.ec.europa.eu/
http://www.example.com/

Re3gistry Software documentation
Serving the Re3gistry contents

57

This file contains the settings of the logging system. The property to define is called ‘_LOGPATH_’.
This text will be replaced with the path to the folder where the logs of the web application will
be saved (See Figure 37).

You can use the log folder used formerly in step 3.5.2.3 logcfg.xml, or just create a new folder to
better distinguish the logs files.

Figure 37: Property in the logger.xml configuration file where the log file is defined

5.3.4. Configuring the HTTP server

Path: <root_folder>/Project_package_1.X/webapp/examples/<inspire-example|neutral-
example>/apache-configurations/service-configuration.conf

The HTTP configuration files included in the examples have been tested with Apache HTTPD 2.4
server.

Consider that Apache may be installed and configured in multiple ways. Here we cover only an
example on how to do it. For more information on how to add additional configuration files to
Apache HTTPD server, refer to [APACHE-CONFIG-FILES].

Copy the file and paste it into the apache configuration folder (it depends on the O.S.).

If you are using Windows, it is likely that your Apache installation file system includes a subfolder
named extra within the conf folder. If this is your case, paste the service-configuration.conf
in the extra folder and mention its presence inside the httpd.conf file (available in the conf
folder). To do so, open the file httpd.conf and include at the end of the document, the following
lines as shown in Figure 38.

Figure 38: httpd.conf file configuration

Registry configuration

Include ‘conf/extra/service-configuration.conf’

Arrived at this point, open the service-configuration.conf file to edit and save the required
modifications. The settings to edit are located in the beginning of the file, see Figure 39.

Re3gistry Software documentation
Serving the Re3gistry contents

58

Figure 39: Settings to configure the HTTP server

Alias /data / [root-path]/output/custom

DocumentRoot [root-path]/output/custom

#<Directory "[root-path]/output/custom">

AllowOverride none

Require all granted

#</Directory>

The user should replace twice the value ‘/[root-path]/output/custom’ by the path where the
exported data is stored.

(Remember this path is the given to the ‘staticizer.custom.folder.path=‘of the
Re3gistryStaticizer.properties configuration file).

Regarding the commented lines (beginning with #), check if you need to uncomment it to make it
work.

Note: Remember to restart the web server every time you perform a modification, in order Apache
to load the new configuration file(s).

5.3.5. Set up the service-specific configuration

The Re3gistry package includes a generic user interface through which the contents are displayed.
The files handling those are included in the webapp-configurations folder.

Path: <root_folder>/Project_package_1.X/webapp/examples/<inspire-example|neutral-
example>/webapp-configurations

This generic interface is suitable and ready to use for both the available examples: inspire-
example and neutral-example.

To make use of the generic user interface, copy the webapp-configurations 5 subfolders
available in the Re3gistry package and paste them into the ‘app_data’ folder present into the
output data folder where the exported data is stored. The app_data folder should appear as in
Figure 40.

Re3gistry Software documentation
Serving the Re3gistry contents

59

Figure 40: app_data folder structure after editing

The layout and the contents belonging to the web application are fully customisable. For more
information on the customisation of the web service see section: Customising the Re3gistry.

5.4. Managing solr

5.4.1. Installing solr

After downloading the Apache solr 4.8.0 version13 (available in the archived versions), go to the
dist folder of the package and copy the solr-4.8.0.war file to paste inside Tomcat’s webapp
folder.

You also need to copy the libraries contained in solr-4.8.0/dist/solrj-lib and paste them
inside Tomcat’s lib folder.

Again in the solr package, copy the folder ‘solr’ available under the example folder and copy it
as well in tomcat’s webapp folder renaming it ‘solr-home’.

5.4.2. Configuring solr

5.4.2.1. solr.xml

Browse tomcat’s configuration files following this path: tomcat/conf/Catalina/localhost and
once there, create a file called solr.xml.

The name of the file must match with the name of the solr instance places in the tomcat’s webapp,
folder if you didn’t change solr.xml should work properly

Open the file and add the lines indicated in Figure 41, by changing appropriately the paths to both
your solr.war file and its data repository ‘solr-home’ (normally already available in tomcat’s
webapp folder).

13 https://archive.apache.org/dist/lucene/solr/4.8.0/

https://archive.apache.org/dist/lucene/solr/4.8.0/

Re3gistry Software documentation
Serving the Re3gistry contents

60

Figure 41: Configuration of the solr.xml file

<?xml version="1.0" encoding="utf-8"?>

<Context docBase="C:/xampp/tomcat/webapps/solr.war" debug="0"

crossContext="true">

 <Environment name="solr/home" type="java.lang.String"

value="C:/xampp/tomcat/webapps/solr-home" override="true"/>

</Context>

5.4.3. core.properties of solr registry collection

Within the solr-home recently renamed folder, you must find a subfolder named ‘collection1’,
copy it and rename it, for example ‘registry’ (See Figure 42) .

Figure 42: New ‘registry’ collection for solr

Inside registry folder, there must be a file named ‘core.properties’, open the file and edit the
value for the name so that it matches with the name given to the folder, in our example:
name=registry.

5.4.3.1.1. Schema.xml

Finally, you need to place the schema.xml file under the conf folder of the solr registry collection.
The xml file comes within the Re3gistry package under its the example folder. Go to your
respective chosen example and take the schema.xml file available within the folder called ‘solr’.

Restart Tomcat to apply the changed and check that solr is working. The solr administration panel
(See Figure 41) should be accessible by follow this URL pattern:

http://localhost:[tomcat_port]/[Name_Of_Webapp]

Re3gistry Software documentation
Serving the Re3gistry contents

61

Figure 43: solr administration panel

5.5. Connecting solr to the Re3gistry webapp

Once your solr instance is properly installed and running, you will be able to define the solr
endpoint in the conf.php file (already manipulated in former steps when setting up the web
application), to enable both the search and the autocomplete functionalities (Find an example in
Figure 44). The solr endpoint normally follows this pattern:

http://[IP_of_your

machine]:[tomcat_port]/[solr_instance_Name]/[name_solr_collection]/select

Figure 44: Example of definition of solr endpoint in the conf.php

5.6. Indexing your registry contents

To provide a good user experience when searching in the web application, you need to index the
data of the registry as you modify it.

To execute the index procedure, you need to populate or update your solr service through its
‘update’ operation by using the post.jar library that will fetch the data in the indicated folder
to index it and make it available. See an example of how to execute it in the shell in Figure 48.

http://[ip_of/

Re3gistry Software documentation
Serving the Re3gistry contents

62

Figure 45: command to update the indexing of solr

java -Durl=http://localhost:8081/solr/registry/update -Dauto -Drecursive -

jar post.jar C:/xampp/tomcat/webapps/Re3gistry-

1.X/DataRepository/StaticisedData/solrcustom/

To check that the indexing has worked properly make a test query as for example:

http://localhost:8081/solr/registry/select?q=*

Alternatively, simply, go to the solr administration panel and check its results (making sure you
requesting the collection of data related to the registry contents) See Figure 46.

Figure 46: Querying indexed contents within the solr administration panel,

To call the post.jar function, remember to locate the shell in the proper solr package folder,
where the library is available (normally at the path solr-

4.8.0/example/exampledocs/post.jar) or to specify explicitly the location of the library.

5.7. Testing the web service

To check that everything is working properly, try the URL you defined in the configuration file
conf.php when setting up the web application (Check previous steps).

 /* Webapp URLs */

 define('REGISTRY_BASE_URL','http://localhost/registry/'); // The root

URL of the registry service. (Example: http://localhost/registry/)

Re3gistry Software documentation
Serving the Re3gistry contents

63

By default, if you have not changed the value, it should be answering to the URL
http://localhost/registry/. If that is the case, you should get a website similar to the one shown in
Figure 47.

In the image of the following Figure, only XML and JSON formats are available, as set by the user
according to its preferences in the former steps (See configuration of
Re3gistryStaticizer.poperties). Also note that the example is incomplete information on the
registry is still to be completed. These questions will be covered in the customisation section.

Figure 47: Re3gistry generic user interface serving the ‘neutral-example’ registers contents

To finish, check that the indexing function works properly, to do that try to search something you
know it should have been indexed, as for example the names of the available registers provided
with the examples. Normally only by typing it should get some suggestions (See Figure 48).

Figure 48: Autocomplete function

http://localhost/registry

Re3gistry Software documentation
Serving the Re3gistry contents

64

5.8. INSPIRE register federation descriptors files - RoR
descriptors

The Re3gistry provides also descriptor files for the registry and its registers called RoR descriptor
files, because of the ‘Registry of registers’.

This files allows the user adding those registers that he considers important, normally because
they are extending INSPIRE into the INSPIRE register federation service14.

The descriptor file is considered by the Re3gistry as an additional type of format with the
difference that it is only provided in English, hence, the file does not need the language identifier.

The descriptor file contains the list of all the registers available in the registry system. To see the
contents of the file, you should be able to obtain it by typing the URL following the pattern shown
in Figure 50.

Figure 49: Generic URL to get the ROR file in the re3gistry

http://registry.example/registry/registry.ror

14 http://inspire-regadmin.jrc.ec.europa.eu/ror/

http://inspire-regadmin.jrc.ec.europa.eu/ror/

Re3gistry Software documentation
Customising the Re3gistry

65

6. Customising the Re3gistry

The following section will help you creating your own registry and registers.

To do so, we will reuse one of the example neutral-example provided with the software
package to adapt them as needed. It consists of a registry that contains two registers ‘Country”
and ‘Companies’, being ‘Country’ a hierarchical register and ‘Companies’ a plain one.

The neutral-example example is available in the package software and located at:

<root_folder>/Project_package_1.X/examples/neutral-example

To create a new customised project, we suggest you to begin by copying the folder of the example
named neutral-example and to rename as you like. In this guide, in order to refer to the paths
of the files, we will rename the folder to ‘customised-example’.

6.1. Customising the Re3gistry contents

6.1.1. Creating a costumised registry

Most of the settings for the registry and its contents are contained in the database-
initialization.sql SQL file. The content of this file relies very closely on the create-
tables.sql file that produces the database structure (tables, columns etc.) and hence, it should
have already been launched.

With a text editor, open the database-initialization.sql file and update the contents of the
file as explained in the following steps. The database-initialization.sql file is located at:

<root_folder>/Project_package_1.X/examples/customised-

example/database/database-initialization.sql

6.1.1.1. Setting the registry parameters

The information related to the registry system is located under the ‘registry’ section in the script
and it relates to the named ‘registry’ database table (See Figure 50).

Figure 50: Fields of registry table of the database

Look for the following line which is below the ‘registry’ table section:

--registry

INSERT INTO registry VALUES ('1', 'registry', 'http://localhost', '4', '2016-

05-28 15:30:00', NULL);

Re3gistry Software documentation
Customising the Re3gistry

66

Some of the highlighted elements may need to be updated depending on your needs. In order of
appearance these elements are:

 The unique identifier (uuid) of the registry. This parameter needs to be changed if you
intend to work with two or more registries. If you are using a single registry, keep the
default value ‘1’.

 The code (uriname) related to the registry. By default, it is set to ‘registry’. Consider to
rename it as this code will be appended to the chosen ‘base URI’ to compose the URIs of
the registry.

 The base URI of the registry

In this case, the resulting URL of the registry will be http://localhost/registry.

6.1.1.2. Defining the email address for the registry contact point

The elements appearing in this part of the SQL script contain the metadata for both the registry
and the registers. They relate to the ‘reference’ database table (See Figure 51).

Figure 51: Fields of reference table of the database

Look for the following line below the ‘reference’ table section:

INSERT INTO reference VALUES ('1', 'YOUR_EMAIL@email-example.eu',

'contactpoint', '2014-10-14 00:00:00', NULL);

Update the highlighted parts of the line with the email address that you want your registry to have
as contact point.

6.1.1.3. Setting the supported languages

This part of the script handles the multilingualism of both the registry and the registers.

Every line of the ‘language code’ section defines a new language. By default, the script contains
all the official European languages. See Figure 52 to see where the language is configured in the
script.

You can remove those that you do not need, or instead, add further languages depending on your
requirements.

Figure 52: Language configuration

--languagecode

INSERT INTO languagecode VALUES ('1', 'english', 'en', 'eng', TRUE);

INSERT INTO languagecode VALUES ('2', 'italiano', 'it', 'ita');

INSERT INTO languagecode VALUES ('3', 'czech', 'cs', 'cze');

Re3gistry Software documentation
Customising the Re3gistry

67

.....

The highlighted parameters might need to be updates. In order of appearance these are:

 The unique identifier (uuid) of the language.
 The label of the language (the human readable label).
 The two-digit code of the language.
 The ISO 639 – 2 three-digit code of the language.
 The default system language (masterlanguage) for the registry system. Note that only a

single language can be set as the master language (TRUE).

Depending on your organisation needs, it could be more convenient for you to set the master
language to your official language, since registered items must be available at least for the
master language.

6.1.1.4. Setting the status values

The information available under the status section of the script, contain the values together with
the public URIs that will be used by the versioning system of the Re3gistry.

The codes (uriname) for the different status come from the [ISO 19135] ‘Procedures for item
registration’ standard.

We recommend to update solely the base URL, to align it with your registry URL as defined in the
step 6.1.1.1. (See Figure 56)

Figure 53: Definition of the register status

--status

INSERT INTO status VALUES ('1', 'http://localhost/registry/status',

'valid');

INSERT INTO status VALUES ('2', 'http://localhost/registry/status',

'invalid');

INSERT INTO status VALUES ('3', 'http://localhost/registry/status',

'submitted');

INSERT INTO status VALUES ('4', 'http://localhost/registry/status',

'superseded');

INSERT INTO status VALUES ('5', 'http://localhost/registry/status',

'retired');

6.1.2. Creating costumised registers

6.1.2.1. Setting the register parameters

The following section of the script handles the creation of the registers that will be contained in
your registry.

Re3gistry Software documentation
Customising the Re3gistry

68

Look for the lines beginning by INSERT INTO register VALUES, present under the ‘register’

section (See Figure 56).

Figure 54: Register section of the script

--register

INSERT INTO register VALUES ('1', 'http://localhost', 'country', '6', '5',

'3', '7','1', '2', '1', '2016-03-25 14:14:05.33835', NULL);

INSERT INTO register VALUES ('2', 'http://localhost', 'company', '6', '5',

'3','7', '1', '2', '1', '2016-03-25 14:16:22.677696', NULL);

For each register that you plan to create, there must be as many INSERT INTO statements, as

registers will be hosted.

The table of the database where this information is stored is named ‘register’.

In the example file that we are using as template, you can see that there are two registers: ‘country’
and ‘company’.

The highlighted parameters in Figure 54, need to be updated according to your needs. In order of

appearance these elements are:

 The unique identifier (uuid) of the register.
 The base URL of the register. If there is more than a register in a common registry, the

value of the base URL needs to be shared.
 The code (uriname) related to the register. It can be considered as the machine readable

name of the register, consider to rename it with a proper and recognizable name as it will
be appended to the former ‘base URI’ to compose the URIs of the registry.

o The reference to the id of the registry assigned in the 6.1.1.1 step. If you want to
handle more than a registry, make sure you are referring to the correct registry
ID.

6.1.2.2. Defining the itemclass

This part of the SQL Script handles the itemclasses of your register. An itemclass is a key element
of the register where parent/child relationships can be defined. To know more on the ‘itemclass’,
please refer to the section 2.1.1.3, The itemclass component.

Look for the lines under the ‘itemclass’ section as shown in Figure 55.

Figure 55: itemclass section of the script

--itemclass

INSERT INTO itemclass VALUES ('1', '1', 'Country', 0, 1, NULL, '2016-03-26

11:24:45.727957', NULL);

INSERT INTO itemclass VALUES ('2', '1', 'Region', 1, 2, '1', '2016-03-26

11:24:56.096222', NULL);

Re3gistry Software documentation
Customising the Re3gistry

69

INSERT INTO itemclass VALUES ('3', '2', 'Company', 0, 3, NULL, '2016-03-25

15:40:30.457694', NULL);

The highlighted elements need to be updated according to your register contents. In order of
appearance these elements are:

 The unique identifier (uuid) of the itemclass.

 The reference to the register unique identifier it belongs to (register), assigned in

previous step.

 The itemclass code (uriname), consider to rename it with a proper and recognisable

name as it will be part of the public URI .

 The hierarchical order of the itemclass (order number). By default, it is set to ‘0’. For

plain registers keep the default value, in case of a hierarchical register make sure the

children itemclass appear after the parent one and that their hierarchical order number

are higher than the parent one.

In the example, the hierarchical Country register contains information on Countries (Country
itemclass) and regions belonging to them (Region itemclass).

 The data procedure order number, that number will define when the data is going to

be processed (dataprocedure) for its load in the database. Those itemclass that have

lower numbers will be processed first.

 The reference to the identifier of the parent itemclass (parent)

Note that in the example, the country register has a parent-child relationship, where the country
itemclass contains the region itemclass. For that reason, country itemclass is considered the parent
of region itemclass and regarding the data procedure order, the country itemclass must be
processed before the region one.

6.1.3. Translating the content

The elements of the registers are subject to ´localisation´, that is, they can be translated or

´localised´. These contents, are handled by the ‘Localization’ table of database (See Figure 56).

This table contains the multilingual fields as label, definition, description and any custom attribute.

Figure 56: Fields in the Localization table of the database

To run the example and populate the database with localised data we will make use of the script

named database-localization.sql available at:

<root_folder>/Project_package_1.X/examples/customised-example/database/

database-localization.sql

Re3gistry Software documentation
Customising the Re3gistry

70

The ‘master language’ needs to be always available, whereas the localisation for any other

language is optional.

If the system does not find the language, it will reuse the available value in the ‘master
language‘ to represent the item.

The script for the localisation will refer to every item, inserted by the initialisation script,

using their unique id.

The structure of the script is shown in Figure 57. Depending on the element to be localised, the

contents in square brackets shall be completed, See an example of its usage in Figure 58.

Figure 57: localisation settings

INSERT INTO localization VALUES('_localization unique id_','[_item unique

id_]',[_itemclass unique id_],'_language code_','[_register unique

id_]','[_custom attribute value unique

id_]','_label_','_definition_','_description_','_uri','2015-06-30

00:00:00',_date last update_,[_registry unique id_],[_reference unique

id_],'[_status unique id_]');

Figure 58: Example of localisation file for the English language

--reference information localization for language en

INSERT INTO localization VALUES('1',NULL,NULL,'1',NULL,NULL,' Registry

manager name',NULL,NULL,NULL,'2015-06-30 00:00:00',NULL,NULL,'4',NULL);

INSERT INTO localization VALUES('2',NULL,NULL,'1',NULL,NULL,'Your contact

point',NULL,NULL,NULL,'2015-06-30 00:00:00',NULL,NULL,'1',NULL);

INSERT INTO localization VALUES('3',NULL,NULL,'1',NULL,NULL,'Legal notice

label',NULL,NULL,'http://ec.europa.eu/geninfo/legal_notices_en.htm','2015-

06-30 00:00:00',NULL,NULL,'2',NULL);

INSERT INTO localization VALUES('4',NULL,NULL,'1',NULL,NULL,'INSPIRE

Maintenance and Implementation Group (MIG)',NULL,NULL,NULL,'2015-06-30

00:00:00',NULL,NULL,'3',NULL);

INSERT INTO localization VALUES('5',NULL,NULL,'1',NULL,NULL,'Members of

INSPIRE Maintenance and Implementation Group (MIG)',NULL,NULL,NULL,'2015-06-

30 00:00:00',NULL,NULL,'7',NULL);

INSERT INTO localization VALUES('6',NULL,NULL,'1',NULL,NULL,'European

Commission, Joint Research Centre',NULL,NULL,NULL,'2015-06-30

00:00:00',NULL,NULL,'5',NULL);

INSERT INTO localization VALUES('7',NULL,NULL,'1',NULL,NULL,'European

Union',NULL,NULL,NULL,'2015-06-30 00:00:00',NULL,NULL,'6',NULL);

-- localization for the registry information(language en)

INSERT INTO localization VALUES('8',NULL,NULL,'1',NULL,NULL,'TEST registry',

'This is the description of the registry',NULL,NULL,'2015-06-30

00:00:00',NULL,'1',NULL,NULL);

--register localization for language en

http://ec.europa.eu/geninfo/legal_notices_en.htm','2015-06-30
http://ec.europa.eu/geninfo/legal_notices_en.htm','2015-06-30

Re3gistry Software documentation
Customising the Re3gistry

71

INSERT INTO localization VALUES('9',NULL,NULL,'1','1',NULL,'INSPIRE simple

register', 'This is a test.',NULL,NULL,'2015-06-30

00:00:00',NULL,NULL,NULL,NULL);

INSERT INTO localization VALUES('10',NULL,NULL,'1','2',NULL,'INSPIRE

hierarchical register', 'This is a test.',NULL,NULL,'2015-06-30

00:00:00',NULL,NULL,NULL,NULL);

--itemclass localization for language en

INSERT INTO localization

VALUES('11',NULL,'2','1',NULL,NULL,'Simple',NULL,NULL,NULL,'2015-06-30

00:00:00',NULL,NULL,NULL,NULL);

INSERT INTO localization

VALUES('12',NULL,'3','1',NULL,NULL,'Hierarchical',NULL,NULL,NULL,'2015-06-30

00:00:00',NULL,NULL,NULL,NULL);

INSERT INTO localization VALUES('13',NULL,'4','1',NULL,NULL,'Hierarchical

level 1',NULL,NULL,NULL,'2015-06-30 00:00:00',NULL,NULL,NULL,NULL);

--status localization for language en

INSERT INTO localization

VALUES('14',NULL,NULL,'1',NULL,NULL,'Valid',NULL,NULL,NULL,'2015-06-30

00:00:00',NULL,NULL,NULL,'1');

INSERT INTO localization

VALUES('15',NULL,NULL,'1',NULL,NULL,'Invalid',NULL,NULL,NULL,'2015-06-30

00:00:00',NULL,NULL,NULL,'2');

INSERT INTO localization

VALUES('16',NULL,NULL,'1',NULL,NULL,'Submitted',NULL,NULL,NULL,'2015-06-30

00:00:00',NULL,NULL,NULL,'3');

INSERT INTO localization

VALUES('17',NULL,NULL,'1',NULL,NULL,'Superseded',NULL,NULL,NULL,'2015-06-30

00:00:00',NULL,NULL,NULL,'4');

INSERT INTO localization

VALUES('18',NULL,NULL,'1',NULL,NULL,'Retired',NULL,NULL,NULL,'2015-06-30

00:00:00',NULL,NULL,NULL,'5');

6.1.4. Import data file

This part of the guide helps you creating you own import data file. We recommend you to

take some of the existing examples coming in the software package and adapt it as needed.

If you prefer to use a software that organises your data into rows and columns, that is
spreadsheets, instead of dealing with basic notepad programs, we recommend you the use of the
open source Open Office Cal c15 with the appropriate settings to work with the Re3gistry as
shown in Figure 59

15 https://www.openoffice.org/

https://www.openoffice.org/

Re3gistry Software documentation
Customising the Re3gistry

72

Figure 59: Settings in Open Office Calc to open appropriately he Re3gistry import actions files.

By using a spreadsheet manager you should get something as in Figure 60, otherwise, if you prefer
to use a notepad program it will look like more to Figure 61.

Figure 60: Re3gistry import action files in a spreadsheet (Open Office Calc)

Re3gistry Software documentation
Customising the Re3gistry

73

Figure 61: Re3gistry import action files in a notepad program (Notepad++)

 Start by opening the example data file contained in the software package
‘<root_folder>/Project_package_1.X/examples/neutral-example/data’.

 Rename the file for example to ‘CustomisedExample.zip’ and unzip the file. The folder
and files contained were created for the ‘neutral-example’, sample files used during
the installation guide in section 3 .

 Take a look at the structure of the folders and the files. The data file structure, shall contain
one folder per itemclass available in the system, and per each itemclass there must be
several CSV files matching the available actions.

However, if the only action to perform is an addition, the only file that needs to be present in the
folder is the addition.csv file. For more information on the different action supported by the
Re3gistry software, refer to section 2.2.3.1.3.

 To create the data file for the ‘customisedExample’ create the three subfolders needed
for this example and name them as you wish, for the guide purpose, we will rename as
following:

o ‘simple’, it will contain a plain register based on the ´Company´ example register.
o ‘hierarchical’, it will contain the first level of a hierarchical register based on the

´Country´ example register.
o ‘hierarchicallevel1’ , it will contain the second level of the linked to the former

hierarchical register, based on the ´Region´ example register.

The name of the folders must match exactly with the itemclass names defined in the database
though the database creation scripts, see section 3.4.

6.1.4.1. Simple register

The file addition.csv, will add a custom attribute called ExampleCustomAttribute. This
customised attribute will not be multivalued, coded or foreign key. For more information on the
customised attributes, please refer to section 2.1.2.

<root_folder> /customised-example/data/Simple/addition.csv

The example shown in Figure 62, will insert, through an addition action an item with the identifier

(id) ‘it1’ in English and Italian in a simple type register.

Figure 62: Example of an addition file with an additional customised attribute in a simple register

LocalId|ParentLocalId|CollectionLocalId|Language|Label|Definition|Descriptio

n|Status|Comment|*ExampleCustomAttribute[t,f,f,f]

Re3gistry Software documentation
Customising the Re3gistry

74

it1|||en|item test|test definition|test description|valid|First

import|example custom attribute content

it1|||it|elemento test|definizione test|descrizione test|valid|primo

import|esempio di contenuto per custom attribute

6.1.4.2. Hierarchical register

6.1.4.2.1. Hierarchical register – first level

The example in Figure 63, will insert three items with the id ‘h1’, ‘h2’ and ‘h3’ in a hierarchical

register in English with no customised attributes.

<root_folder> /customised-example/data/Hierarchical/addition.csv

Figure 63: Example of addition in hierarchical register using the addition.csv of its itemclass

LocalId|ParentLocalId|CollectionLocalId|Language|Label|Definition|Descriptio

n|Status|Comment

h1|||en|item test 1|test definition|test description|valid|First import

h2|||en|item test 2|test definition|test description|valid|First import

h3|||en|item test 3|test definition|test description|valid|First import

The example shown in Figure 64, will invalidate the element with the id h3 and will set the element
h2 as successor of the invalidated item.

<root_folder> /customised-example/data/Hierarchical/invalidation.csv

Figure 64: Example of invalidation of an item

LocalId|CollectionLocalId|SuccessorLocalId|SuccessorCollectionLocalId|Commen

t

h3||h2||

6.1.4.2.2. Hierarchical register – second level

The example in Figure 65, will insert an item with the id ‘hl1’ and another with the id ‘hl2’ in the

hierarchical register created in the former section 6.1.4.2, in English with no custom attribute.

This file is related to an itemclass that has a parent (the parent is the ‘Hierarchical’ itemclass
used in the former section); that is why the field CollectionLocalId is filled with an element
from the ‘Hierarchical’ itemclass.

The hl2 item has also a parent/child relation. In fact, it has the item hl1 as parent.
This parent/child relation is different from the collection hierarchy relation. Indeed, the collection
hierarchy relation establishes a relation between elements belonging from different
itemclasses (like the ‘Hierarchical’ and ‘HierarchicalLevel1’ itemclass). The parent/child
relation establishes a relation between elements belonging from the same itemclass.

Re3gistry Software documentation
Customising the Re3gistry

75

<root_folder> /customised-example/data/HierarchicalLevel1/addition.csv

Figure 65: Creation of the second level of a hierarchical register

LocalId|ParentLocalId|CollectionLocalId|Language|Label|Definition|Descriptio

n|Status|Comment

hl1||h1|en|item test 1|test definition|test description|valid|First import

hl2|hl1|h2|en|item test 2|test definition|test description|valid|First

import

6.1.5. Transformation files

For each new register added to the system, a related XSLT transformation files shall be created in

order to get the right export files.

An example of XSLT files can be found in the ‘customised example’ folder (duplicated from the
‘neutral-example’) folder: /example/xsl

There is an XSLT file for each register and for each itemclass available in the system. Below in

Figure 72, there is a list with the location of the files needed to produce the HTML format

supporting the simple and hierarchical register explained in the sections above.

Figure 66: XSLT files needed to support the conversion in HTML formats for the simple and hierarchical
registers

<root_folder> /customised-example/xsl/html/simple_register.html.xsl

<root_folder> /customised-example/xsl/html/Simple.html.xsl

<root_folder> /customised-example/xsl/html/hierarchical_register.html.xsl

<root_folder> /customised-example/xsl/html/Hierarchical.html.xsl

<root_folder> /customised-example/xsl/html/HierarchicalLevel1.html.xsl

6.1.6. Deployer configuration

The deployer module is responsible for deploying all the static files produced by the staticisation

system to the target production server. This is needed if the production server is in a different

machine (or the files in the same machine need to be moved to another place in the same system).

This step is optional, in fact, the files produced by the Re3gistry can also be moved by hand to the

target path.

The module automatically takes all the static files produced and move them to the configured

target place.

The system uses a configurable script to launch the deployment process. This script can be found

in the main application properties folder under

Re3gistry Software documentation
Customising the Re3gistry

76

<root_folder>/Project_package_1.X/binaries/Re3gistry-1.X/WEB-

INF/classes/scripts/Re3gistryDeployer.

The system automatically recognises the operative system (Linux or Windows) and launch the

relative file (linux-deploy.sh or windows-deploy.bat). This shell script can be configured and

customized to perform the needed operation in order to move the produced files to another

directory as well as to another server.

To configure the Deployer module, the properties to be customized are contained in the file

 <root_folder>/Project_package_1.X/binaries/Re3gistry-1.X/WEB-

INF/classes/configurations/module/RegistryDeployer.properties

The properties are described below.

 deploy.script.folder: this property represents the folder where the .sh of .bat file are

stored.

 deploy.rss.file: this property is the location of the base RSS file. It is the master file

that keeps all the RSS news. If the ‘RSS update’ option has been selected, the RSS update

system takes this file and updates it with the new information. Then the file is copied to

the target path.

 deploy.rss.targetfolder: the folder in which the RSS file is stored after the update

(usually it is the same folder that contains all the files produced by the staticizer).

 deploy.rss.baseuri: this is the base URI of the RSS file, stored in the FSS file as the

channel's ‘link’ element (example: for the inspire registry, it

is http://inspire.ec.europa.eu/registry/rss/)

6.2. Customising the Re3gistry web interface

The Re3gistry web application (webapp) is a component that allows you to publish the data

exported by the Re3gistry software through a web interface, exposing also all of the formats

produced (e.g. XML, JSON, RDF, …).

The webapp is available at

<root_folder>/Project_package_1.X/webapp’

To set up the basic configuration of the web application, follow the guide available at section 0.

The following paragraphs will guide you understanding how the system works and how to set up

your own service. All the files to be customised are available at folder

 <root_folder>/Project_package_1.X/examples/<selected-example>/webapp-

configurations

In case this section is read after the

http://inspire.ec.europa.eu/registry/rss/

Re3gistry Software documentation
Customising the Re3gistry

77

Re3gistry Software documentation
Customising the Re3gistry

79

Serving the Re3gistry contents at section 5 , the user should have created the ‘custom-example’
folder by duplicating the ‘neutral-example’ folder. In this case all the files are already in the
‘webapp-configurations’ folder, and they have only to be updated.

6.2.1. Webapp structure

The web application reads the data from the JSON files exported by the Re3gistry software and

shows them in the web interface.

The web pages are provided in different languages; the user interface is localised using the json-

based localisations files contained in the folder

<root_folder>/Project_package_1.X/examples/<selected-exampe>/webapp-

configurations/app_data/localization

To change the default labels in the desired language, edit the <XX>.json file (<XX> represents the

2-digit language code).

The following paragraphs will explain in details how to customise the web application.

6.2.2. Modes

A registry is made of different components: register and register items that are differently

described and hence differently represented as far as the layout is concerned.

For this reason, the Re3gistry webapp provides by default four ‘layout modes’:

 Mode 1: Registry page

 Mode 2: Register page

 Mode 3: Detail page

 Mode 4: Detail page for the hierarchical register (like the INSPIRE code list register).

For each of the different elements available in the registry (e.g. Registry page, Registers page,
Items page), there are different representations, that is different fields to be visible in the web
pages.

To better explain this concept, we recommend you to take a look at the INSPIRE registry, an

instance of the Re3gistry, more specifically at the different fields available in one of the INSPIRE

theme web page [INSP-THEME-AD] see Error! Reference source not found. and in the INSPIRE code

list register web page [INSP-CODELIST-AccessRestrictionValue], see Figure 68.

Re3gistry Software documentation
Customising the Re3gistry

80

Figure 67: Addresses theme within the theme register of the INSPIRE Registry

Re3gistry Software documentation
Customising the Re3gistry

81

Figure 68: Restriction code code list within the code list register of the INSPIRE Registry

The detail pages always provide the standard fields as ‘label’, ‘definition’, ‘description’

and ‘status’ ; but also they may differ with additional customised fields closely related on the

type (itemclass) of each of the items (e.g. ‘Annex’ for the Theme, ‘Themes’, ‘Application schema’

and ‘Extendibility’ for the Code List).

The web application provided by the Re3gistry software allows you to customise the page for each

of the itemclass and the element type described above (Registry, Register and Items). If the data

file for a specific itemclass has more costumised fields, they can be specified using a JSON file that

describes the fields to be visible for that specific itemclass.

This is done through a configuration file in the JSON format. This file, also called ‘mode descriptor’

is contained in the following folder:

<root_folder>/Project_package_1.X/examples/<selected-exampe>/webapp-

configurations/app_data/modes/mode.descriptor.json

This ‘mode descriptor’ refers to the elements contained in the related JSON data files (the data

files produced by the Re3gistry) and in the GUI localisation files (described at the beginning of this

section).

The next examples contain snippets from each of the files referenced by the descriptor: JSON data

file and the GUI localisation file.

Re3gistry Software documentation
Customising the Re3gistry

82

To help the understanding of each properties, a color code has also been used: the color used in

the following example of the GUI localisation file, will be used to match the fields in the mode

descriptor files (subsequent sections).

6.2.2.1. GUI localisation file

This is an example of GUI localisation file; it is useful to understand how it is used in the ‘mode
descriptor’ (described in the following sections).

{

...

"label":"Label",

"themes":"Theme list",

"annex":"Annex",

"status":"Status",

...

"layer-label":"Layer label",

"contact":"Contact",

"layers":"Layers",

"registers":"Registers",

"extensible-none-label":"Not extensible",

"results":"Results",

"latestversion":"Latest version",

"ec":"European Commission",

...

6.2.2.2. MODE 1 descriptor - Registry page

The color used in the example below are used to match elements between files.

Mode descriptor (mode.descriptor.json)

"mode1":{

 "http://localhost/registry":{

 "id":"register",

 "listtitlekey":"registers",

 "tablecolumns":[

 {

 "labelkey":"label",

 "itemkey":"label->text",

 "href":"id"

 }

]

 }

}

Re3gistry Software documentation
Customising the Re3gistry

83

Related JSON data file (registry.en.json)

{

 "registry":{

 "id":"http://localhost/registry",

 "language":"en",

 "label":{

 "lang":"en",

 "text":"INSPIRE registry"

 },

 "registrymanager":"European Commission, Joint Research Centre",

 "contentsummary":{

 "lang":"en",

 "text":"The INSPIRE infrastructure involves ...”

 },

 "registers":[

 {

 "register":{

 "id":"http://localhost/theme",

 "label":{

 "lang":"en",

 "text":"INSPIRE theme register"

 }

 }

 },

....

As you can see, each of the modes uses the page URL (registry URI) as identifier, this way, the web
application knows, for each of the paged viewed, which mode apply to the web page.

The URL and all of the other properties shall have exactly the same name of the fields contained
in the JSON format or in the GUI localisation files. In the following table, the elements are
explained.

Descriptor
element

JSON file
element

UI
translation
key

Description

"id":"registrer" registry.registers
.register

 It identifies the main element name
contained in the JSON list of items

"listtitlekey":"re
gisters"

 registers This is the key of the string of the table's
title

Re3gistry Software documentation
Customising the Re3gistry

84

"tablecolumns" Defines the column to be displayed in the
table containing the list of elements

"tablecolumns.la
belkey":"label"

 label This defines the id of the string translation
available in the UI localization file

"tablecolumns.it
emkey":"label-
>text"

registry.registers
.register.label.te
xt

 This property is the reference to the JSON
data element to be displayed

"tablecolumns.h
ref":" id"

registry.registers
.register.id

 This defines the link associated to the label
described in the previous row.

6.2.2.3. MODE 2 descriptor - Register page

The color used in the example below are used to match elements between files.

"mode2":{
 "http://localhost/theme":{
 "id":"theme",
 "listtitlekey":"themes",
 "tablecolumns":[
 {
 "labelkey":"label",
 "itemkey":"label->text",
 "href":"id"
 },
 {
 "labelkey":"annex",
 "itemkey":"annex"
 },
 {
 "labelkey":"status",
 "itemkey":"status->label->text",
 "href":"status->id"
 }
]
 },

...

Related JSON data file (theme.en.json)

{

 "register":{

 "id":"http://localhost/theme",

 "language":"en",

 "label":{

 "lang":"en",

 "text":"INSPIRE theme register"

 },

 "contentsummary":{

 "lang":"en",

 "text":"The INSPIRE theme register contains all spatial data

themes, as defined in the Annexes of the INSPIRE Directive ..."

 },

http://inspire.ec.europa.eu/theme/theme.en.json

Re3gistry Software documentation
Customising the Re3gistry

85

 "registerowner":"European Union",

 "registermanager":"European Commission, Joint Research Centre",

 "registercontrolbody":"INSPIRE Maintenance and Implementation Group

(MIG)",

 "submitter":"Members of INSPIRE Maintenance and Implementation Group

(MIG)",

 "contactpoint":{

 "label":"JRC INSPIRE Registry Team",

 "email":"inspire-registry-dev@jrc.ec.europa.eu"

 },

 "license":{

 "label":"Europa Legal Notice",

 "uri":"http://ec.europa.eu/geninfo/legal_notices_en.htm"

 },

 "registry":{

 "id":"http://localhost/registry",

 "label":{

 "lang":"en",

 "text":"INSPIRE registry"

 }

 },

 "containeditems":[

 {

 "theme":{

 "id":"http://localhost/theme/ad",

 "version":"0",

 "annex":"I",

 "label":{

 "lang":"en",

 "text":"Addresses"

 },

 "definition":{

 "lang":"en",

 "text":"Location of properties based on address

identifiers, usually by road name, house number, postal code."

 },

 "description":{

 "lang":"en",

 "text":"An address is an identification of the

fixed location of a property. The full address is ..."

 },

 "itemclass":{

 "id":" Theme",

 "label":{

 "lang":"en",

 "text":"Theme"

 }

 },

 "status":{

 "id":"http://localhost/registry/status/valid",

 "label":{

 "lang":"en",

 "text":"Valid"

 }

 },

 "register":{

Re3gistry Software documentation
Customising the Re3gistry

86

 "id":"http://localhost/theme",

 "label":{

 "lang":"en",

 "text":"INSPIRE theme register"

 },

 "registry":{

 "id":"http://localhost/registry",

 "label":{

 "lang":"en",

 "text":"INSPIRE registry"

 }

 }

 }

 }

 },

 ...

Each of the modes use the page URL (register URI) as identifier. In the mode 2 descriptor, there is
one descriptor for each of the registers.

In the example above there is the theme register as example.

The URL and all of the other properties shall have exactly the same name of the fields contained
in the JSON format or in the GUI localization files.

In the following table, each of the element is explained.

Descriptor
element

JSON file
element

UI
translation
key

Description

"id":"theme" register.con
taineditems
.theme

 It identifies the main element name contained
in the JSON list of items (in this case the theme)

"listtitlekey":"th
emes"

 themes This is the key of the string of the table's title

"tablecolumns" Defines the column to be displayed in the table
containing the list of elements

"tablecolumns.la
belkey":"label"

 label This defines the id of the string translation
available in the UI localization file

"tablecolumns.it
emkey":"label-
>text"

register.con
taineditem.t
heme.label.t
ext

 This property is the reference to the JSON data
element to be displayed

"tablecolumns.h
ref":" id"

register.con
taineditem.t
heme.id

 This defines the link associated to the label
described in the previous row. Since the last
JSON data item was inside the label->text
element, we use here the parent:id to refer to
the theme.id element.

Re3gistry Software documentation
Customising the Re3gistry

87

"tablecolumns.la
belkey":"annex"

 annex This defines the id of the string translation
available in the UI localization file

"tablecolumns.it
emkey":"annex"

register.con
taineditem.t
heme.annex

 This property is the reference to the JSON data
element to be displayed

"tablecolumns.la
belkey":"status"

 status This defines the id of the string translation
available in the UI localization file

"tablecolumns.it
emkey":"status-
>label->text"

register.con
taineditem.t
heme.status
.label.text

 This property is the reference to the JSON data
element to be displayed

"tablecolumns.h
ref":"status->id"

 This defines the link associated to the label
described in the previous row.

In some cases, a field could be a multi-value field. In this case, the JSON descriptor is represented
in the following way. You can find a complete example in the mode descriptor file -> mode 2 ->
code list.

...

"itemkey":"parents=parent->label->text",

...

The related JSON data file is

...

"parents":[

{

 "parent":{

 "id":"http://localhost/codelist/DesignationValue",

 "label":{

 "lang":"en",

 "text":"Designation"

 }

 }

}

],

...

6.2.2.4. MODE 3 descriptor - Item detail page

"mode3":{

 "theme":{

 "id":"theme",

 "detailedements":[

 {

 "labelkey":"annex",

 "itemkey":"annex",

 "topseparator":"true",

 "bold":"false"

 }

Re3gistry Software documentation
Customising the Re3gistry

88

]

 },

...

Related JSON data file (theme.en.json)

{

"theme":{

 "id":"http://localhost/theme/ad",

 "thisversion":"http:// localhost /theme/ad:1",

 "latestversion":"http:// localhost /theme/ad",

 "language":"en",

 "annex":"I",

 "label":{

 "lang":"en",

 "text":"Addresses"

 },

 "definition":{

 "lang":"en",

 "text":"Location of properties based on address identifiers, usually

by road name, house number, postal code."

 },

 "description":{

 "lang":"en",

 "text":"An address is an identification of the fixed location of a

property. The full address is a ..."

 },

 "governance-level":{

 "id":"http://localhost/registry/governance-level/eu-legal",

 "label":{

 "lang":"en",

 "text":"eu-legal"

 }

 },

 "itemclass":{

 "id":"Theme",

 "label":{

 "lang":"en",

 "text":"Theme"

 }

 },

 "status":{

 "id":" http://localhost/registry/status/valid",

 "label":{

 "lang":"en",

 "text":"Valid"

 }

 },

 "register":{

 "id":"http://localhost/theme",

 "label":{

 "lang":"en",

 "text":"INSPIRE theme register"

 },

 "registry":{

 "id":"http://localhost/registry",

http://localhost/registry/status/valid%22
http://localhost/theme%22
http://localhost/registry%22

Re3gistry Software documentation
Customising the Re3gistry

89

 "label":{

 "lang":"en",

 "text":"INSPIRE registry"

 }

 }

 }

 }

}

Each of the modes use the itemclass as identifier. In the mode 3 descriptor, there is one
descriptor for each of item details page.

In the example above the theme register has been used.

The itemclass and all of the other properties shall have exactly the same name of the fields
contained in the JSON format or in the GUI localization files. In the following table, each of the
element is explained.

Descriptor element JSON file
element

UI
translation
key

Description

"detailedements" This is the container of all the
field to be displayed in the
HTML view. The standard
fields are always visible in the
HTML. If you have additional
fields, you can add it using
this element.

"detailedements.labelkey":"annex" annex This defines the id of the
string translation available in
the UI localization file

"detailedements.itemkey":"annex" theme.annex This property is the reference
to the JSON data element to
be displayed

"topseparator":"true" This property add a separator
between one element and
eanother in the HTML detail
page.

"bold":"false" This property render the text
related to this field in bold.

In case the element has a hierarchy, like the code list detail page, some additional elements are
added into the descriptor of this mode (a full example can be found on the mode 3 descriptor file
-> code list).

The additional elements are:

Re3gistry Software documentation
Customising the Re3gistry

90

 tablecolumns (already described in the tables above): Defines the column to be displayed

in the table containing the list of elements in the hierarchy (for example, in case the detail

page is a code list, the table will contain the code-values)

 relationtablecolumns: Defines the column to be displayed in the table containing the

list of elements with some relation (for example the list of parent of that specific item).

Example of additional fields in mode 3 for the hierarchical elements:

...

"tablecolumns":[

 {

 "labelkey":"label",

 "itemkey":"label->text",

 "href":"id"

 },

 {

 "labelkey":"status",

 "itemkey":"status->label->text",

 "href":"status->id"

 },

 {

 "labelkey":"governance-level-label",

 "itemkey":"governance-level->label->text",

 "href":"governance-level->id"

 }

],

"relationlisttitlekey":"codelists",

"relationlistkey":"codelist",

"relationtablecolumns":[

 {

 "labelkey":"label",

 "itemkey":"label->text",

 "href":"id"

 },

 {

 "labelkey":"themes",

 "itemkey":"themes=theme->label->text",

 "href":"theme->id"

 },

 {

 "labelkey":"application-schema",

 "itemkey":"applicationschema->label->text",

 "href":"applicationschema->id"

 },

 {

 "labelkey":"status",

 "itemkey":"status->label->text",

 "href":"status->id"

 }

]

...

6.2.2.5. MODE 4 Descriptor - Item detail for hierarchical elements

Re3gistry Software documentation
Customising the Re3gistry

91

"mode4":{

 "CodeListValue":{

 "id":"value",

 "collectionelementid":"codelist",

 "detailedements":[

 {

 "labelkey":"themes",

 "itemkey":"themes=theme->label->text",

 "topseparator":"true",

 "href":"id",

 "bold":"false"

 },

 {

 "labelkey":"application-schema",

 "itemkey":"applicationschema->label->text",

 "topseparator":"false",

 "href":"id",

 "bold":"false"

 },

 {

 "labelkey":"code-list",

 "itemkey":"codelist->label->text",

 "topseparator":"false",

 "href":"id",

 "bold":"false"

 }

],

 "listtitlekey":"narrower",

 "tablecolumns":[

 {

 "labelkey":"label",

 "itemkey":"label->text",

 "href":"parent:id"

 },

 {

 "labelkey":"status",

 "itemkey":"status->label->text",

 "href":"id"

 },

 {

 "labelkey":"governance-level-label",

 "itemkey":"governance-level->label->text",

 "href":"id"

 }

]

 },

...

Related JSON data file
http://inspire.ec.europa.eu/codelist/AccessRestrictionValue/forbiddenLegally/

forbiddenLegally.en.json

{
"value":{
"id":"http://localhost/codelist/AccessRestrictionValue/forbiddenLegally",
"thisversion":"http://localhost/codelist/AccessRestrictionValue/forbiddenLega

Re3gistry Software documentation
Customising the Re3gistry

92

lly:1",
"latestversion":"http://localhost/codelist/AccessRestrictionValue/forbiddenLe

gally",
"language":"en",
 "label":{
 "lang":"en",
 "text":"forbidden legally"
 },
"definition":{
 "lang":"en",
 "text":"Access to the transport element is forbidden by law."
 },
"itemclass":{
 "id":"CodeListValue",
 "label":{
 "lang":"en",
 "text":"Code list value"
 }
},
"status":{
 "id":" http://localhost/registry/status/valid",
 "label":{
 "lang":"en",
 "text":"Valid"
 }
},
"register":{
 "id":"http://localhost/codelist",
 "label":{
 "lang":"en",
 "text":"INSPIRE code list register"
 },
 "registry":{
 "id":"http://localhost/registry",
 "label":{
 "lang":"en",
 "text":"INSPIRE registry"
 }
 }
},
"governance-level":{
 "id":"http://localhost/registry/governance-level/eu-legal",
 "label":{
 "lang":"en",
 "text":"eu-legal"
 }
},
"themes":[
 {"theme":{
 "id":"http://localhost/theme/tn",
 "label":{
 "lang":"en",
 "text":"Transport networks"
 }
 }
}

Re3gistry Software documentation
Customising the Re3gistry

93

],
"applicationschema":{
 "id":"http://localhost/applicationschema/tn",
 "label":{
 "lang":"en",
 "text":"Common Transport Elements"
 }
},
"codelist":{
 "id":"http://localhost/codelist/AccessRestrictionValue",
 "label":{
 "lang":"en",
 "text":"Access Restriction"
 }
}
}
}

The mode 4 has basically the elements already described in the previous pages. In this case the
table columns element in the mode descriptor describes the column for the narrower table (the
narrower table is visible only if the item has narrower items).

6.2.3. Static pages

The static pages are those pages that have a fixed layout and present a list of elements that are

not available in the data files. It could be seen as a kind of ‘service list’.

An example of static page could be the ‘Status’ page of the INSPIRE registry

(http://localhost/registry/status).

The files describing the static pages are stored in the
‘<root_folder>/Project_package_1.X/examples/<selected-exampe>/webapp-

configurations/app_data/staticpages’ folder.

Each of the static pages available in the system has one JSON descriptor file.

To add a static pages just add the related descriptor file. The file name pattern is
<page_name>.descriptor.json. In the following example, there is the "Status" static page,
available in the INSPIRE registry.

6.2.3.1. Static page example: status.descriptor.json

{

 "id":"http://localhost/registry/status",

 "labelkey":"status",

 "descriptionkey":"status-definition",

 "listtitlekey":"values",

 "types":{

 "invalid":{

 "id":"http://localhost/registry/status/invalid",

 "labelkey":"invalid",

 "descriptionkey":"invalid-desc"

http://inspire.ec.europa.eu/registry/status
http://inspire.ec.europa.eu/registry/status%22
http://inspire.ec.europa.eu/registry/status/invalid%22

Re3gistry Software documentation
Customising the Re3gistry

94

 },

 "valid":{

 "id":"http://localhost/registry/status/valid",

 "labelkey":"valid",

 "descriptionkey":"valid-desc"

 },

 "superseded":{

 "id":"http://localhost/registry/status/superseded",

 "labelkey":"superseded",

 "descriptionkey":"superseded-desc"

 },

 "retired":{

 "id":"http://localhost/registry/status/retired",

 "labelkey":"retired",

 "descriptionkey":"retired-desc"

 },

 "submitted":{

 "id":"http://localhost/registry/status/submitted",

 "labelkey":"submitted",

 "descriptionkey":"submitted-desc"

 }

 }

}

Field Description

id The id of the element shall be the URL of the page

labelkey The key of the translated label contained in the localization files.

descriptionkey The key of the translated description contained in the localization files.

listtitlekey The key of the title for the table contained in the localization files.

types This field contains a list of items, one for each of the values available in the

page. For each type, the key of the list item is the one used to compose the

URL.

Once this file has been created, in order to correctly access the static page, the Apache

configuration file has to be updated by adding the URL rewrite rule for the newly created page. An

example of URL rewrite configuration for the ‘Status’ static page is available in Figure 69.

Figure 69: Example of configuration string for the ‘Status’ static page

Service pages

Status

RewriteRule ^/registry/status$ /webapp/index.php?static=status [L]

RewriteRule ^/registry/status/$ /webapp/index.php?static=status [L]

RewriteRule

http://inspire.ec.europa.eu/registry/status/valid%22
http://inspire.ec.europa.eu/registry/status/superseded%22
http://inspire.ec.europa.eu/registry/status/retired%22
http://inspire.ec.europa.eu/registry/status/submitted%22

Re3gistry Software documentation
Customising the Re3gistry

95

^/registry/status/(valid|invalid|retired|submitted|superseded)$ /webapp/i

ndex.php?static=status&type=$1 [L]

RewriteRule

^/registry/status/(valid|invalid|retired|submitted|superseded)/$ /webapp/

index.php?static=status&type=$1 [L]

6.2.4. Customised pages

The customised pages can contain any type of content; an example of those pages could be the

common ‘help’ and ‘about’ page.

The files describing the custom pages are stored in the folder

<root_folder>/Project_package_1.X/examples/<selected-exampe>/webapp-

configurations/app_data/custompage

. Inside that folder, there is one folder for each of the custom pages available in the system.

Inside the specific folder, there are two files:

 descriptor.json: it is the descriptor of the page

 en.php: this file contains the contents (HTML code is allowed) that will be included in the

page.

The name of the folder shall be exactly the name used in the URL. The following example (about

page), shows a correct folder structure:

webapp/app_data/custompages/about/descriptor.json

webapp/app_data/custompages/about/en.php

6.2.4.1. Example custom page descriptor

{

 "id":"http://localhost/registry/about",

 "labelkey":"about-title"

}

The descriptor.json file contains the id of the element that shall be the URL of the target page.

The labelkey contains the key to the page title available in the localization files (describe above

at section).

The en.php file is filled with the HTML to create the custom page.

6.2.5. Website parts

http://localhost/registry/about%22

Re3gistry Software documentation
Customising the Re3gistry

96

The folder ‘<root_folder>/Project_package_1.X/examples/<selected-exampe>/webapp-
configurations/app_data/parts’ contains the mapping files between some parts of the
webapp and the localization file.

Currently the webapp has only the file footer.json that represents the label-key (pointing to the
localization file) and links of each footer menu entry. If you want to customize the footer, you can
just edit the entry in this file (and in the localization files).

Re3gistry Software documentation
Developing the Re3gistry

97

7. Developing the Re3gistry

This guide is especially devoted to those developers that may want to reuse the Re3gistry software
source code.

7.1. Technology

The Re3gistry software requires Java 1.7 or Java 1.8 technology.

The libraries used in the system are described in the Project Object Model (POM) file.

This project is built using Apache Maven technology.

The php web application requires php >= 5.4.

7.1.1. Web Server

The Re3gistry needs two different web servers: one to serve the RESTful web service and the other
is a servlet container for the Re3gistry Java webapp.

The two servers used are:

 Apache HTTPD Version 2.4 [APACHE-HTTPD]
 Apache Tomcat Version 7 or Apache Tomcat 8 [APACHE-TOMCAT]

7.1.2. Database

The database layer is handled by EclipseLink library. All the databases supported by EclipseLink can
be used for the system.

Note: only the following database type/version, has been tested for the current version of the
system: PostgreSQL 9.2

7.2. System structure

The Re3gistry software is organised in modules. This concept allows a simpler customisation and
extension of the system.

The main components of the system are the

 Re3gistryCommon module and
 The Re3gistry webapp.

The coming paragraphs describe the main structure of the software package and its modules.

7.2.1. Module concept

Re3gistry Software documentation
Developing the Re3gistry

98

A module is a Java library that is usually composed of a core part (Java library) but there may also
be accompanied of a presentation part (web pages).

 The module’s core part contains all the logic related to its functionality. Each module needs
to include the Re3gistryCore module in order to access all the common libraries and
functionalities.

 The module’s presentation part is optional (you can access the module's core
functionalities by customising the standard interface provided by the Re3gistry) and it is
contained in the module’s folder of the Re3gistry webapp. This folder contains the user
interface to interact with the function provided by the module and the specific module’s
configuration file. The Re3gistry webapp contains also the main configuration properties
files and all the localization properties files.

7.2.2. Re3gistryCommon module

The Re3gistryCommon module is the basis of whole the software. It contains the object definition
that represents each entity in the system and the manager to work with them (read/write).

This core module has not a related presentation part in the Re3gistry webapp since its function is
to provide the object structure and the main functionalities to the other modules.

The Re3gistryCommon library is composed of different packages:

 Constants: containing a class with all the constants used in this library;
 Managers: containing all the methods to access the data for each bean defined in the

model package;
 Model: containing all the beans related to the information model;
 Utils: containing several general utility classes, such as StringUtils or Logger class.

7.2.3. Re3gistry software interface

The Re3gistry software contains the web interface to manage and use the functionalities provided
by each module. In this component, all the configuration files are stored, both related to the core
module and to each of the additional module.

Below there is a description of the components (organised by folders) contained in the Re3gistry
webapp.

 Web Pages: contains the files related to the web pages (jsp, css, js, images etc.). The
‘modules’ folder, inside the ‘Web Pages’ one, contains specific web pages and
configuration files.

 Source: contains the Java class related to the Re3gistry webapp (constants, module
manager functionalities, servlets, utility, etc.).

 Resources: contains the configurations and localization files. Below there is a description
for each file within it:

o META-INF/persistence.xml: file with the configurations related to the database

Re3gistry Software documentation
Developing the Re3gistry

99

o configurations/Application.properties: file containing the main Re3gistry
configurations (common to all the modules);

o configurations/modules: containing the properties related to each module. The
file name shall be exactly as the name of the module’s folder.

o configurations/logcfg.xml: configuration related to the logging system;
o localization/Application/localizationBundle_xx.properties: the folder

localization contains all the properties files related to the localization of the system.
There is also a subfolder named ‘Application’ containing the core system
localizations. Then, each module has its own localization file contained in a folder
called exactly as the library part of the module.

7.3. Source code

The following section will show how to install and run the Re3gistry using the NetBeans IDE step
by step [NETBEANS].

We have chosen NetBeans16 for this documentation because it is the official open source IDE
provided by Java.

7.3.1. Load projects

The first step is to load the projects contained in the ‘source’ folder of the package using NetBeans
IDE, as shown in Figure 68. The project is available at:

<root_folder>/Project_package_1.X/source

7.3.2. Configuration files

16 https://netbeans.org/

Figure 70: Loading the project with NetBeans IDE

https://netbeans.org/

Re3gistry Software documentation
Developing the Re3gistry

100

For convenience, all the configurations are placed under the ‘build profile’ in the POM files of
the Re3gistry web project. These Project Object Model (POM) files can be found under the project’s
root folder, See an example of a POM file in Figure 71.

Edit these configuration settings using the local settings:

 The path for the logs file;
 The information regarding the database;
 The path for the temporary import folder/ the custom export data folder (if it is left blank,

the webapp folder will be taken).

To customise the set up for all the feature of each module, check the following properties file:

 Re3gistry/src/main/resources/configurations/modules/Application.propert

ies: this file contains all the main configurations for the system. To run the system the
properties to update are ‘application.language.available’ which represents the available
language on the interface and the related language label, ‘application.contact’,
‘mail.sender’, ‘mail.recipient’ which are the e-mail address of the contact, sender and
respectively recipient and ‘mail.smtp.host’ which is the server host smpt email;

 Re3gistry/src/main/resources/configurations/modules/RegistryData.proper

ties:
o data.operatinglanguage: this property represents the main language of the

system;
o data.supportedlanguage: this property represents the list of the languages

supported by the data management system.
 Re3gistry/src/main/resources/configurations/modules/RegistryStaticizer/

RegistryStaticizer.properties:

o xml.formats.list=xml,json,html,atom: the formats to be used by the xslt
transformations (separated by comma)

o staticizer.solr.format=solr: the solr name.

Figure 71: Example POM file

<profiles>

 <profile>

 <id>env-dev1</id>

 <activation>

 <property>

 <name>env</name>

 <value>dev1</value>

 </property>

 </activation>

Re3gistry Software documentation
Developing the Re3gistry

101

 <properties>

 <!-- Loggers configurations -->

<Default.log.file.dir><ROOT_FOLDER>/Re3gistry-

data/logs/Complete.log</Default.log.file.dir>

<Re3gistry.log.file.dir><ROOT_FOLDER>/Re3gistry-

data/logs/Re3gistry.log</Re3gistry.log.file.dir>

<Re3gistryData.log.file.dir><ROOT_FOLDER>/Re3gistry-

data/logs/Re3gistryData.log</Re3gistryData.log.file.dir>

<Re3gistryStaticizer.log.file.dir><ROOT_FOLDER>/Re3gistry-

data/logs/Re3gistryStaticizer.log</Re3gistryStaticizer.log.file.dir>

 <!-- Database configurations -->

 <persistence.jdbc.url>jdbc:postgresql://db_ip:5432/inspire_regi

stry </persistence.jdbc.url>

 <persistence.jdbc.driver>org.postgresql.Driver</persistence.

jdbc.driver>

 <persistence.jdbc.username>db_username</persistence.jdbc.userna

me>

 <persistence.jdbc.password>db_password</persistence.jdbc.passwo

rd>

 <!-- Specific module configurations -->

 <!-- RegistryData -->

<RegistryData.import.dir><root_folder>/Re3gistry-

data/temp</RegistryData.import.dir>

 <!-- / -->

 <!-- RegistryStaticizer -->

<!-- The root folder where to save the files produced by the Staticizer. ->

<RegistryStaticizer.export.dir><ROOT_FOLDER>/Re3gistry-

data/staticizer</RegistryStaticizer.export.dir>

<!-- The path from where to read the xslt transformation and the

translations for the GUI interface -->

<RegistryStaticizer.xsl.dir><ROOT_FOLDER>/Re3gistry-

data/xsl</RegistryStaticizer.xsl.dir>

 </properties>

 </profile>

</profiles>

Re3gistry Software documentation
Developing the Re3gistry

102

Before starting the build process, ensure that the build profile (specified in the POM) for each the
Re3gistry web project is selected. To do check this, in NetBeans go to ‘Set Configuration’ under
the project and choose the right profile (right click on the project -> ‘Set Configuration’).

7.3.3. Choose the authentication method

In order to choose the desired authentication method, two configuration files have to be updated.
Below you can find a reference for both files in each case.

 source/Re3gistry/src/main/resources/Application.properties
 source/Re3gistry/src/main/webapp/WEB-INF/web.xml

The Application.properties file contains the property that allows the switch between ECAS or
SHIRO authentication method.

The default configuration is Apache SHIRO as authentication method.

Login type: SHIRO | ECAS

application.LoginType=SHIRO

In addition, the web.xml file has to be updated based on the authentication

method selected.

For example, the default configuration is Apache SHIRO: the SHIRO related

lines are uncommented and the ECAS lines are commented:

<!--SHIRO authentication configs-->

 <listener>

 <listener-

class>org.apache.shiro.web.env.EnvironmentLoaderListener</listener-class>

 </listener>

 <filter>

 <filter-name>ShiroFilter</filter-name>

 <filter-class>org.apache.shiro.web.servlet.ShiroFilter</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>ShiroFilter</filter-name>

 <url-pattern>/*</url-pattern>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>FORWARD</dispatcher>

 <dispatcher>INCLUDE</dispatcher>

 <dispatcher>ERROR</dispatcher>

 </filter-mapping>

Re3gistry Software documentation
Developing the Re3gistry

103

<!--END SHIRO authentication configs-->

<!--ECAS authentication configs-->

 <!--

 <login-config>

 <auth-method>ECAS</auth-method>

 <realm-name>Re3gistry Realm</realm-name>

 </login-config>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>not protected content</web-resource-name>

 <url-pattern>/res/*</url-pattern>

 <url-pattern>/ChangeLocale</url-pattern>

 <url-pattern>/login</url-pattern>

 <url-pattern>/login.jsp</url-pattern>

 </web-resource-collection>

 </security-constraint>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>inspire-regadmin</web-resource-name>

 <description>Requires users to be authenticated but does not

require them to be authorized</description>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>*</role-name>

 </auth-constraint>

 <user-data-constraint>

 <description>Encryption is not required for the application in

general.</description>

 <transport-guarantee>NONE</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

 -->

<!--END ECAS authentication configs-->

Re3gistry Software documentation
Developing the Re3gistry

104

If the chosen authentication method is ECAS, comment the SHIRO configuration lines and
uncomment the ECAS ones.

To use the ECAS authentication method, follow the ECAS installation guide at https://ies-
svn.jrc.ec.europa.eu/projects/registry-development/wiki/Re3gistry_ECAS_install.

7.3.4. Database creation and initialisation

The database initialisation procedure creates the structure of the database and populate the
registry contents. Execute the database initialisation using the example SQL scripts available in the
project’s package ‘example/<chosen_example>/database‘ folder.

The database script could be executed from either the command line or using a Graphic User
Interface (GUI) such as pgAdmin.

The first step is to create a database. After the database has been created, the initialisation script
can be executed.

Open the create-tables.sql into an SQL editor and run the queries.

Do the same for the database-initialization.sql and database-localization.sql. It is important
to run the create-tables.sql before the any other scripts. The database-
initialization.sql and database-localization.sql files contain some sample data.

If the clean-up of the database is needed, in the example packages, there is also a drop-
tables.sql script.

For each new register to be added, the register table, the itemclass table and the localisation table
should all be filled in; for more information related to the creation of new register, please refer
to the customization guide at .

7.3.5. Build projects

To get the system running, build each project and start the web application. To build the project,
right click on the project name and select ‘build’ or ‘clean and build’.

7.3.6. Creating new modules

To start creating a new module, it is important to understand the module’s structure by reading
the chapter and taking a deep look at one of the modules included in the package (for example
the Data module or the Staticizer Module).

After understanding the structure, the development of a new module can be started from an IDE
like NetBeans. The following guide is provided using the NetBeans IDE as example.

7.3.6.1. Step 1

https://ies-svn.jrc.ec.europa.eu/projects/registry-development/wiki/Re3gistry_ECAS_install
https://ies-svn.jrc.ec.europa.eu/projects/registry-development/wiki/Re3gistry_ECAS_install
https://ies-svn.jrc.ec.europa.eu/projects/registry-development/wiki/Re3gistry_1_1_quick_install#_cp6.4

Re3gistry Software documentation
Developing the Re3gistry

105

Open the main project contained in the project package (project_package_folder/source).

7.3.6.2. Step 2

Create a new project by right clicking on the project browser and click on ‘new project’ as shown
in Figure 72.

Figure 72: Creating new project from the project browser

Choose ‘Maven’ -> ‘Java Application’ in the opened window, and then click the ‘next’ button
(See Figure 73).

Re3gistry Software documentation
Developing the Re3gistry

106

Figure 73: Project type selection

In the following window (See Figure 74), give a name to the new module; in this example the
‘NewModule’ name is used.

Figure 74: Module name

Re3gistry Software documentation
Developing the Re3gistry

107

7.3.6.3. Step 3

Go to the newly created project and edit the POM file, to insert the dependency to the
RegistryCommon module (See Figure 75).

Figure 75: POM edit example

<dependency>

 <groupId>eu.europa.ec.Re3gistrycommon</groupId>

 <artifactId>Re3gistryCommon</artifactId>

 <version>x.x</version>

</dependency>

< !-- Replace x.x with the right version of the module -->

7.3.6.4. Step 4

The library component of the module is now ready. To start the development, create the required
package and classes in the project’s source folder.

It is important to create the Class ‘Constants.java’ under package
‘eu.europa.ec.newmodule.constant’. This is a common used class containing all the constants
related to this module.

This class shall contain at least the class name (See Figure 76).

Figure 76: Constants.java example

package eu.europa.ec.newmodule.constants;

public final class Constants {

 /* ###################################### */

 /* ########## Common constants ########## */

 /**

 * The name of this module

 */

 public static final String MODULE_NAME = "NewModule";

}

7.3.6.5. Step 5

Re3gistry Software documentation
Developing the Re3gistry

108

If the new module requires a dedicated interface, the user shall create it using the following
instructions. Otherwise, you can jump to Step 6.

Open the Web Pages folder in the Registry webapp project. Search the modules folder, right click
on it and select ‘New’ - > ‘Folder’ (See Figure 77). Name the new folder exactly as the previously
created Java Application.

Figure 77: Creation of the module's folder

7.3.6.6. Step 6

Create the module’s property file, inside the ‘Other sources – configurations/modules’
project folder.

This folder is located under Re3gistry/WEB-INF/classes/configurations/modules) with the
same module name ‘NewModule.properties’, see Figure 78.

Re3gistry Software documentation
Developing the Re3gistry

109

Figure 78: Module's properties file

The required property keys for all the new modules are the following:

 module.active=true – if set to true, the module is active and is loaded in the system.
 module.menuitem.visible=true – if this property is true, the menu entry related to this

module is shown in the main system webpage. If no module has this property as visible,
the menu bar is not visible.

 module.menuitem.label=Data – This property represents the label of the menu item in
the system main menu.

 module.homewidget.enabled=true – This property enables/disables the system to
show the module widget in the home page.

 module.dateformat=dd-MM-yyyy HH:mm:SS – The module date/time format.
 module.menuitem.order=2 – The order in which this menu item is shown in the main

menu. The higher values will be displayed later.

7.3.6.7. Step 7

Add the localization files in the ‘Other sources’ -> ‘src/main/resources/localization’ folder.

Re3gistry Software documentation
Developing the Re3gistry

110

To do this, right click on the ‘Other sources’ -> ‘src/main/resources’ folder and select ‘New’
-> ‘Folder’ (See Figure 79) .

Figure 79: Localization folder for the new module

Name the new folder ‘localization/NewModule’ (See Figure 80).

Re3gistry Software documentation
Developing the Re3gistry

111

Figure 80: Localization properties folder

 Then create a file for each language using the following naming pattern (See Figure 79):

‘LocalizationBundle_[language_code].properties’.

The minimum set of property to be available in the localization files are:

 The module’s title: common.pagetitle=New Module
 The module’s description: main.description=Descriptive text

Re3gistry Software documentation
Developing the Re3gistry

112

Figure 81: Module's localization properties file

7.3.6.8. Step 8

Add into the logger configurations the entry relative to this new module. Open the logcfg.xml
file under ‘Other sources’ –> configuration.

Add the entry related to the new module as defined below.

Note that this example is using maven profile properties. In this case the property key related to
this logger file has also to be added to the POM file.

Re3gistry Software documentation
Developing the Re3gistry

113

Figure 82: Logger configurations

<!-- NewModule -->

<appender name="appender.NewModule"

class="org.apache.log4j.DailyRollingFileAppender">

 <param name="File" value="${NewModule.log.file.dir}"/>

 <param name="DatePattern" value="'.'yyyy-MM-dd"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d - %-5p - %-10c [%C{1}.%M:%L]

%m%n"/>

 </layout>

</appender>

<logger name="NewModule">

 <level value="info"/>

 <appender-ref ref="appender.NewModule"/>

</logger>

7.3.6.9. Step 9

The module structure is now complete. The next step is to create the required web pages and to
start the development of the functionalities for the module (both in the library and in the web
part).

The web pages shall be placed in the module’s folder root, created at .

There are two file required:

 main.jsp: contain the main web page of the module, with all the functionalities.
 widget.jsp: this page represents a sort of summary that can be placed in the home

page of the system.

The main structure of the modules can be understood by having a look at the files from the modules
available in the project package.

There are some particular module related code snippets, used in the web pages that are explained
below.

 ${module.localization['property.name']} – It is used to retrieve a specified text
in the language selected by the user. The keys passed as argument to this method has
to be defined in the module specific localisation file (created at Step 7).

 ${module.properties['property.name']} – It is used to retrieve a specific
properties related to this module. The keys passed as argument are defined in the
module’s related properties file (defined at Step 6).

Re3gistry Software documentation
Developing the Re3gistry

114

Index of keywords

A

Addition, 23, 25, 26, 31
Additional fields, 23
administration panel, 19, 36, 48, 49, 54, 63, 64, 65
Apache SHIRO, 45
Application.properties, 41, 42, 45, 46, 101, 102, 104
authentication method, 45
Autocomplete, 67

B

base URI, 45
Build projects, 106

C

changelog, 15
Clarification, 23, 26, 27, 31
collection, 17, 24, 26, 28, 29, 30, 31, 32, 56, 63, 64, 65, 78,

105
conf.php, 59, 64, 66
configuration file, 44, 45, 57, 58, 60, 61, 66, 83, 96, 100
contact point, 69
content-negotiation, 12, 34, 55, 56, 57
core.properties, 63
costumisation, 33
costumised registers, 71
costumised registry, 68
create-table.sql, 39
create-tables.sql, 39, 68, 106
CSV, 11, 13, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32
customisation, 62, 66, 99
customised attributes, 24
Customised attributes, 19

D

data consistency, 21
data localisation, 19
data management module, 20
Data management module, 21
data staticization module, 20
data storage, 32
Database, 19, 38, 50, 99, 103, 106
database-initialization.sql, 39, 68, 106
database-localization.sql, 39, 73, 106
deployer module, 20, 35, 79
descriptor, 25, 26, 27, 67, 83, 84, 86, 88, 89, 91, 95, 97
descriptor file, 67, 89, 91, 95
download, 13
drop-table.sql, 39

E

ECAS, 11, 13, 37, 38, 45, 46, 104, 105, 106
email notification, 32, 52
endpoint, 64
Errors, 30
external items, 15
externally governed items, 23
Externally governed items, 23

F

federation, 13, 15, 67
feedback, 13

G

GUI, 19
gui-languages, 34

H

HTTP header, 56
HTTP server, 60

I

ignore warning, 30, 32, 50
import, 13, 17, 19, 20, 21, 22, 30, 32, 36, 43, 50, 51, 74, 77,

78, 102, 103
import data file, 19, 21
Import data file, 22, 74
index, 15, 24, 34, 37, 64, 97
indexing, 34
information model, 16
INSPIRE registry, 12, 15, 17, 19, 38, 85, 87, 91, 94, 95
inspire-example, 38, 44, 50, 60, 61
Installing, 37, 58, 62
Internal items, 23
Invalid, 18, 74
Invalidation, 23, 28, 31
item, 17
item keys, 34
itemclass, 17, 22, 23, 25, 26, 27, 28, 29, 30, 33, 71, 72, 73,

74, 76, 78, 83, 87, 90, 91, 94, 106

L

language mapping file, 34
Language representations, 19
libraries, 38, 46, 62, 99, 100

Re3gistry Software documentation
Developing the Re3gistry

115

License, 14
localisation, 19, 34, 73, 106
log, 25, 28, 29, 30, 43, 60, 103, 115
logcfg.xml, 41, 43, 101, 114
logger.xml, 59, 60
logging system, 60
logs, 60, 102, 103

M

Main fields, 23
mandatory fields, 23, 24
master language, 22, 70, 73
master xml files,, 32
module, 20, 21, 24, 32, 34, 35, 57, 79, 99, 100, 101, 102,

103, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116
multilingualism, 19, 69, 73

N

neutral-example, 38, 44, 50, 52, 53, 60, 61, 66, 68, 76, 78,
81

O

open source, 13, 15, 101

P

persistence.xml, 42
POM, 11, 99, 102, 104, 109, 114
procedure status, 36

R

Re3gistry 1.3, 15
Re3gistryData.properties, 43
Re3gistryDeployer.properties, 44, 54
Re3gistryStaticizer.properties, 43
readme.md, 38
recursive, 28
register, 17
register extension, 23
registry, 16
Registry core module, 20, 21
RegistryData.properties, 42, 102
RegistryDeployer.properties, 42, 79
RegistryStaticizer.properties, 42, 102
relationship, 17, 72
RESTful, 11, 13, 20, 34, 55, 56, 99
RESTful web service, 20, 34, 55, 56, 99
Retired, 18, 74
Retirement, 23, 30, 31
RoR, 13, 15, 67
RSS, 44

Run full export, 52

S

schema.xml, 63
separator, 23
server, 12, 20, 35, 36, 41, 43, 53, 55, 56, 57, 58, 60, 61, 79,

102
SHIRO, 46
shiro.ini, 46, 49
solr, 34, 44, 53, 55, 62, 63, 64, 65, 102
solr.xml, 62, 63
source code, 99
SQL scripts, 38, 106
standard attributes, 18, 19
Staticisation, 32
status, 17, 18, 23, 25, 26, 36, 51, 52, 70, 71, 73, 74, 83, 84,

86, 87, 89, 90, 92, 93, 94, 95, 97
Submitted, 18, 74
successor, 27, 28, 29, 31, 77
Superseded, 18, 74
Supersession, 23, 27, 29, 31
system architecture, 20
System requirements, 37, 55

T

Tomcat, 12, 37, 41, 42, 43, 44, 45, 46, 47, 48, 62, 63, 99

U

URI, 11, 13, 15, 17, 23, 24, 26, 45, 57, 69, 71, 72, 79
uriname, 24, 33, 56, 69, 70, 71, 72
uuid, 69, 70, 71, 72

V

Valid, 18, 74, 87, 90, 94
var, 34, 57, 58, 59

W

Warnings, 30
web service, 13, 16, 19, 38, 55, 56, 57, 62, 65
web.xml, 46
webapp, 19

X

XSLT, 11, 32, 33, 34, 44, 52, 78

Z

ZIP, 21, 22

	Table of contents
	Abbreviations
	Bibliography
	1. Overview
	1.1. What is the Re3gistry?
	1.2. Features and capabilities
	1.3. Getting the software
	1.4. License
	1.5. Background
	1.1. Acknowledgments
	1.2. What is new in the Re3gistry 1.3

	2. Understanding the Re3gistry
	2.1. The Re3gistry information model
	2.1.1. The information model components
	2.1.1.1. The registry component
	2.1.1.2. The register component
	2.1.1.3. The itemclass component
	2.1.1.4. The item component
	2.1.1.5. The status component

	2.1.2. Standard and customised attributes
	2.1.2.1. Registry standard attributes
	2.1.2.2. Register standard attributes
	2.1.2.3. Item standard attributes
	2.1.2.4. Custom attributes

	2.1.3. Language representations: localisation

	2.2. The Re3gistry system architecture
	2.2.1. Modules overview
	2.2.2. Registry core module
	2.2.3. Data import module
	2.2.3.1. Import data file
	2.2.3.1.1. Data file structure
	2.2.3.1.2. Internal and external items
	2.2.3.1.3. Data actions and CSV formats
	2.2.3.1.3.1. Addition
	2.2.3.1.3.2. Clarification
	2.2.3.1.3.3. Supersession
	2.2.3.1.3.4. Invalidation
	2.2.3.1.3.5. Retirement

	2.2.3.2. Data analyser
	2.2.3.3. Data storage

	2.2.4. Staticiser module
	2.2.4.1. Staticisation process
	2.2.4.2. XSLT
	2.2.4.3. Static element localisation
	2.2.4.4. Additional information

	2.2.5. Deployer module

	2.3. Re3gistry administration panel

	3. Installing the Re3gistry
	3.1. System requirements
	3.2. Package details
	3.3. Important notes
	3.4. Database configuration
	3.4.1. Creating a new database
	3.4.2. Running the SQL scripts to create tables and populating them

	3.5. Configuring the Re3gistry
	3.5.1. Move the binaries folder to Tomcat’s webapp folder
	3.5.2. Modifying the configuration files
	3.5.2.1. persistence.xml
	3.5.2.2. Application.properties
	3.5.2.3. logcfg.xml
	3.5.2.4. Re3gistryData.properties
	3.5.2.5. Re3gistryStaticizer.properties
	3.5.2.6. Re3gistryDeployer.properties [Optional]

	3.5.3. Setting up the authentication method
	3.5.3.1. Available authentication methods
	3.5.3.2. Choosing and implementing the authentication method
	3.5.3.2.1. Application.properties
	3.5.3.2.2. web.xml

	3.5.4. Adding users to SHIRO

	4. Using the Re3gistry
	4.1. Accessing the Re3gistry administration panel
	4.2. Importing data
	4.3. Exporting and converting data files
	4.4. Deploying the contents
	4.4.1. Moving data from the Re3gistry software to the server
	4.4.2. Creating a modification summary RSS feed

	5. Serving the Re3gistry contents
	5.1. System requirements
	5.2. Web service
	5.2.1. RESTful web service
	5.2.2. Standard web service

	5.3. Installing the Re3gistry webapp
	5.3.1. Copy the sample web application folder
	5.3.2. Setting the web application
	5.3.3. Configuration
	5.3.3.1. conf.php
	5.3.3.2. logger.xml

	5.3.4. Configuring the HTTP server
	5.3.5. Set up the service-specific configuration

	5.4. Managing solr
	5.4.1. Installing solr
	5.4.2. Configuring solr
	5.4.2.1. solr.xml

	5.4.3. core.properties of solr registry collection
	5.4.3.1.1. Schema.xml

	5.5. Connecting solr to the Re3gistry webapp
	5.6. Indexing your registry contents
	5.7. Testing the web service
	5.8. INSPIRE register federation descriptors files - RoR descriptors

	6. Customising the Re3gistry
	6.1. Customising the Re3gistry contents
	6.1.1. Creating a costumised registry
	6.1.1.1. Setting the registry parameters
	6.1.1.2. Defining the email address for the registry contact point
	6.1.1.3. Setting the supported languages
	6.1.1.4. Setting the status values

	6.1.2. Creating costumised registers
	6.1.2.1. Setting the register parameters
	6.1.2.2. Defining the itemclass

	6.1.3. Translating the content
	6.1.4. Import data file
	6.1.4.1. Simple register
	6.1.4.2. Hierarchical register
	6.1.4.2.1. Hierarchical register – first level
	6.1.4.2.2. Hierarchical register – second level

	6.1.5. Transformation files
	6.1.6. Deployer configuration

	6.2. Customising the Re3gistry web interface
	6.2.1. Webapp structure
	6.2.2. Modes
	6.2.2.1. GUI localisation file
	6.2.2.2. MODE 1 descriptor - Registry page
	6.2.2.3. MODE 2 descriptor - Register page
	6.2.2.4. MODE 3 descriptor - Item detail page
	6.2.2.5. MODE 4 Descriptor - Item detail for hierarchical elements

	6.2.3. Static pages
	6.2.3.1. Static page example: status.descriptor.json

	6.2.4. Customised pages
	6.2.4.1. Example custom page descriptor

	6.2.5. Website parts

	7. Developing the Re3gistry
	7.1. Technology
	7.1.1. Web Server
	7.1.2. Database

	7.2. System structure
	7.2.1. Module concept
	7.2.2. Re3gistryCommon module
	7.2.3. Re3gistry software interface

	7.3. Source code
	7.3.1. Load projects
	7.3.2. Configuration files
	7.3.3. Choose the authentication method
	7.3.4. Database creation and initialisation
	7.3.5. Build projects
	7.3.6. Creating new modules
	7.3.6.1. Step 1
	7.3.6.2. Step 2
	7.3.6.3. Step 3
	7.3.6.4. Step 4
	7.3.6.5. Step 5
	7.3.6.6. Step 6
	7.3.6.7. Step 7
	7.3.6.8. Step 8
	7.3.6.9. Step 9

	Index of keywords

