Re3gistry

Software documentation - Version 1.3

Re3gistry Software documentation

The following documentation provides details related to the Re3gistry software, including the
installation instructions. It provides also several sections including guides to create a custom
registry service starting from an example and a guide to extend the software by creating new
modules.

This is a live document; it is being improved continuously. To have the last version you can refer to
https://ies-svn.jrc.ec.europa.eu/projects/reqistry-development

Please report any feedback on the documentation at: inspire-reqgistry-dev@jrc.ec.europa.eu

Reuse is authorised, provided the source is acknowledged. The reuse policy of the
European Commission is implemented by a Decision of 12 December 20111,

L http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011D0833

2

https://ies-svn.jrc.ec.europa.eu/projects/registry-development?jump=wiki
mailto:inspire-registry-dev@jrc.ec.europa.eu
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011D0833
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011D0833

Re3gistry Software documentation

Table of contents

TADIE OF CONTENTS <.ttt e bttt et st et et e e e 3
FY o] o TNV =1 T o LSRR 11
BID OB AP ..t 12
L. OVEIVIEW ittt ettt ettt st et et e st et ettt 13
1.1, What (s the REBEIStIY 2 ittt 13
1.2, Features and CapabilitiEs.....coiiiiiiiiei e 13
1.3, Getting the SOTtWAIE....ii i 13
R W o= 1< PRSP SR PP 14
1.5, BACKEIOUNG ..ottt ettt et saa et e b 14
1.1, ACKNOWIEAZMENTS oot et 15
1.2, Whatis new inthe Re3gISTry 1.3 . e 15

2. Understanding the RE3GISTIY ..o et 16
2.1. The Re3gistry information Modelc.cooiiiiiiiiicce e 16
2.1.1. The information model COMPONENTScoviiiuiiiiiiiieceee e 16
2.1.1.1. The registry COMPONENT....cciiciii ittt e s e bee e e e sbee e e e sbeeeeenareeas 16
2.1.1.2. The register COMPONENT.......ccuiiiieiieeecciee et eete e e ete e e e et e e e e bae e e e eabeeeeeeabeeeeenarenas 16
2.1.1.3. The itemclass COMPONENTueiiiiiiie ettt e et e e e e e tae e e e ebee e e e e beee e e areeas 17
2.1.1.4. The iteM COMPONENT......viiii ittt e et e e e et e e e e et e e e e e bae e e e eabteeeeeabaeeeennsenas 17
2.1.1.5. The StatUus COMPONENTiiiiiciie et e e e e e e e s bae e e e sbee e e esabeeeeesaseeas 17

2.1.2. Standard and customised attributes.........ccoiviiiiiiiiii 18
2.1.2.1. Registry standard attribULeS........cocciiiiiiiiiii e 18
2.1.2.2. Register standard attribULESooiivcuiiiiicee e 18
2.1.2.3. Item standard attribULES........ooiuiiiiee s 19
2.1.2.4. CUSEOM @EFIDULES ..ot 19

2.1.3. Language representations: 0Calisationccoviiviiiiiiiiciie e 19

2.2. The Re3gistry system archit@CtUreoouii i 20
2.2. 1. MOQUIES OVEIVIEW ...ttt ettt 20
2.2.2. Registry COre MOAUIEcoouiiiiiie e 21
2.2.3. Dataimport MOAUIEooi e 21
2.2.3.1. [aaYeTeT e F-1 - i i 11U PPN 22
2.2.3.1.1. Data file SEIUCTUIE c..eeeii ettt ettt st be e s e e 22

Re3gistry Software documentation

2.2.3.1.2. Internal and external itemMS........ccceeiiiieiiieiie e 22
2.2.3.1.3. Data actions and CSV fOrmMats.......coceieriieiiieiiiee ettt 23
2.2.3.2. (D 1= T F= VT PPN 30
2.2.3.3. DAt SEOTAE e 31
2.2.4. SEAtiCISEr MOAUIE...c.viiiii e 32
2.2.4.1. - Lol EY: L o] o T o] o Tl =13 N 32
224.2.) I PN 32
2.2.43. Static element [0CaliSatioNcooei i 33
2.2.4.4. Additional INfOrMatioN........coocii i e e 34
2.2.5. DePloyer MOAUIE......coii e 34
2.3, Re3gistry administration Panel ... 35
3. INStAlliNG the REBISTIY woiiiiiiiiiie et ettt e 36
3.1, SYSEEM FEQUITEMENTS Leeiiiiiiiiie ettt et e e e ettt e e ettt e e e s b eeeeennaeeeeennnes 36
3.2, PACKAEE AOTAIIS .o iiiiiii e 36
IS T 10 1 0T] = [ol a0 (<SOSR 37
3.4, Database CONFIGUIAtION ...c.iciiiiiiiiiccie e 37
3.4.1. Creating @ NeW dat@basecoviiiiiiiiie e 37
3.4.2. Running the SQL scripts to create tables and populating themcccccoooiiiiiiinna. 37
3.5, Configuring the RE3GISTIY cuviiiiii i et 39
3.5.1. Move the binaries folder to Tomcat’s webapp folderc..ccoovveveiiiiiiiiieee, 40
3.5.2. Modifying the configuration fileSooviiiiiiiiiee e 40
3.5.2.1. PEISISEENCE. XM 1eeiiiiiiiee it e e e e e et e e e e sebte e e e sbtaeeesntaeeessseeeesnnes 41
3.5.2.2. FAYoJo][or=YdToT o o] go) o 1] 41T SRR 41
3.5.2.3. 1o Y=Lor =301 o | RPN 41
3.5.2.4. RE3gIStryData. ProPerties cccc e 42
3.5.2.5. RE3giStryStatiCiZer.PrOPEItIES . ..uviiiiiiiiiiiiiiteeee ettt e s s rrre e e e e e s s ssaenee 42
3.5.2.6. Re3gistryDeployer.properties [Optional].......cccveeeeciiieiiciieeicceee e 43
3.5.3. Setting up the authentication Method ..o 44
3.5.3.1. Available authentication Methods.........ocveiiiiiiiiiiii e 44
3.5.3.2. Choosing and implementing the authentication method............cccccceeeeiiiiiinen . 44
3.5.3.2.1. Application.propPertiescccccuiiiiiie et e e e e ananes 44
3.5.3.2.20 WEBXM i st e e s te e e s e bte e e s saraeeesnes 44

3.5.4. AddiNg USErs 10 SHIRO ...oouviiiiei e 45

Re3gistry Software documentation

4. USING TN REBISTIY ottt e et et eenae e eenees 46
4.1. Accessing the Re3gistry administration panelcccooviviiiiiiiiecie e 46
4.2, IMPOItING ATA coiiiiiiiiicciee e ettt 47
4.3, Exporting and converting data fileScoooiiiiiiiic e 49
4.4, Deploying the CONTENTS ...oocii ittt 50

4.4.1. Moving data from the Re3gistry software to the serverccocevveviiiiiiciceeeenn. 50
4.4.2. Creating a modification summary RSSfeed........c.cocvvviiiiiiiiiiiccceeee e 50

5. Serving the Re3ISTry CONTENTS ..iiiiiiiiiii ettt ae e 52
5.1, SYSTEM FEQUITEMENTS .eoiiiiiiiiie ettt e et e et e e ettt e e e e eeeeennees 52
T Y L= o Y=V ol PP PPRR 52

5.2.1. RESTIUI WED SEIVICE ..ot 53
5.2.2. Standard WED SEIVICEccuuiiiiiieii i 54
5.3. Installing the Re3gistry WeDaPP ..vviiiviiiiiiiicie e 54
5.3.1. Copy the sample web application fOldercccoviiiiiiiiiice e 55
5.3.2. Setting the Web appliCationc.ccoviiiiiiiiciecie e 55
5.3.3. CONTIGUIAtION .ttt 55
5.3.3.1. (oo Y0 o] o] o TSRS 56
5.3.3.2. T Y=4 =Y (s o 1 PRSP 56
5.3.4. Configuring the HTTP SEIVEIcouiiiciie et 57
5.3.5. Set up the service-specific configuration.........cccccooeviiiiiiiiii e 58
SIS V. T o T V=41 o= 3K Yo RS UT 59
540 INSTAIING SO/ oot 59
5,42, CONFIUIINEG SOI oot e 59
5.4.2.1. SOITXIMI ettt b e s h e sttt e bt e b e e bt e s bt e sateeat e et e e nbeesbeesaeesanena 59
5.4.3. core.properties of solr registry COlECtionoocviiviiiiiiiicee e 60
5.4.3.1.1. SCREM@.XMI ..ttt b et s be e st e et et e e sbe e saeesaneea 60

5.5. Connecting solr to the Re3gistry Webappcovvviiiiiiicee e 61
5.6. INdexing YOUr registry CONTENTS ...vvviiiiiirie et 61
5.7, Testing the WED SEIVICE ..cuvi e 62
5.8. INSPIRE register federation descriptors files - ROR descriptorsccoeevvveivieeicieccie, 64

6. CUSTOMISING The RE3EISTIY . uiiiiiiiiiiii e et 65
6.1. Customising the Re3iStry CONTENTSoiiiiiiiii e 65

6.1.1. Creating a CoOStUMISE FEEISTIY ..cuvviiirie et 65

Re3gistry Software documentation

6.1.1.1. Setting the registry Parameterso 65
6.1.1.2. Defining the email address for the registry contact point.........cccceeiveeiviiieeiiciiennins 66
6.1.1.3. Setting the suppPOorted |aNGUAEEScoevcviiieecieee et 66
6.1.1.4. Setting the StatUS VAIUES ...c..eviee et e e e e 67
6.1.2. Creating COStUMISE FEGISTOIS ..iiiiiiiiiie ettt 67
6.1.2.1. Setting the register PAramMEterSouc e e e e e e ree e e e areeas 67
6.1.2.2. DefiNiNg the ItEMICIASS ... viiei i e e 68
6.1.3. Translating the CONENT......oiiii e 69
6.1.4. IMPOrt data fil. i e 71
6.1.4.1. Y1 00] o (N = <] = PRSP 73
6.1.4.2. HIerarChiCal FEEISTEN ...uii it e e s et e e e enes 74
6.1.4.2.1. Hierarchical register — first Velcccuviieieoiiiie e 74
6.1.4.2.2. Hierarchical register —second [€Velcccviiiiiciiiiecciee e 74
6.1.5. Transformation fllES ... 75
6.1.6. Deployer CONfIGUIAtioNcciiiiiii e 75
6.2. Customising the Re3gistry web interface.........ooooviiiiiiiiciicceeeeeeeeee e 76
6.2.1. WEDAPP STITUCTUIE .oiiiiii e ettt e erae e 79
B.2.2. IMMOAES ..ottt et e eae e re e 79
6.2.2.1. GUI 10CalISAtION Fil w..eeeeeieieee e 82
6.2.2.2. MODE 1 descriptor - REEIStIY PAE . .ccccvceiiiieeeee ettt e e e e esvre e e e e e e e s snenes 82
6.2.2.3. MODE 2 descriptor - REEIStEr PAZE.....ccccuvviiieeeeeeeecciiree e ee e e e e e e e e srreee e e e s e e esnenes 84
6.2.2.4. MODE 3 descriptor - [tem detail PAgEcuveeeecuiiie e 87
6.2.2.5. MODE 4 Descriptor - Item detail for hierarchical elementsccccovveiviiieeiiiiieennnns 90
B.2.3. ST PABES et 93
6.2.3.1. Static page example: status.descriptor.jSONccccveeeeeiieieeiiiee e 93
6.2.4. CUSEOMISEA PAZES wvveeieveeeceeee ettt ettt et e et e e erae e e aaeeeaee e 95
6.2.4.1. Example custom Page desCriptor....c..uiiiiieee ettt 95
B.2.5. WEDSITE PAIES ettt erae e 95
DEVeloPINg the REBEISTIY .viiiiiii ettt et 97
/2% S =Yoo Y Vo] [o} =Y TR PRSP 97
7.0 L. WD SEIVET ottt n ettt 97
70,2, Database o et 97
7.2, SYSTEM STIUCTUIN ...t e e e e e e et e e e e e e e e s esaraaees 97

Re3gistry Software documentation

7.2.1. MOAUIE CONCEPT ottt ettt e e ee e e e snseenne e 97
7.2.2. Re3gistryCommon MOAUIEcoeeiiiiiiiiiecee et 98
7.2.3. Re3gistry software iNterfacecccooviiiiiiiice e 98
7.3, SOUICE COUR. ..ttt ettt bbbttt ettt ettt 99
7.3. 1. LOGA PrOJECES ittt ettt eeearaean 99
7.3.2. ConfigUration fllEScoiiiiiicee e 99
7.3.3. Choose the authentication Methodcccooiiiiiiii e 102
7.3.4. Database creation and initialisationcoccooiiiiiiiii 104
7.3.5. BUIIA PrOJECES it 104
7.3.6. Creating NeW MOAUIESooviiiicee et 104
7.3.6.1. K] =T o I RSP P PP UPTTP T OPPTPP 104
7.3.6.2. KL L=] o 1 OO 105
7.3.6.3. (=] S OO 107
7.3.6.4.] =T o I PP P PSP OPPTPP 107
7.3.6.5. =] o 5 Z N 107
7.3.6.6.] =T o JN RSP P PP PPPTPP 108
7.3.6.7. (=] o I OO 109
7.3.6.8. L L=] R TSSO 112
7.3.6.9.] =T o IR LSO P P UTTT PP 113
INAEX OF KEYWOITS ..ottt et ett e et e e e aee e 114

Re3gistry Software documentation

Index of figures and tables

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:

Simplified iINformation MOAElccviiiiiii s 16
Schematic SySteM AeSCIIPLION ..viiiiiiieiii ettt 20
SYSTEM AESCIIPTION .ttt ettt ettt e e e et e e eseesnees 21
Example of @ Zip file STFUCTUIEiiiiiicce e e 22
Encoding of the addition CSV file when several values are not available 23
configuration of the mandatory field Property......ccceiiiiiiiiccieeece e 24
Addition CSV example - internal iteMScviiiiiiie e 25
Addition CSV example - eXternal iteMSiciiiiie e 26
Clarification CSV file @XamPIE ...ioiiiiiiiicie e 27

Example of supersession CSV file ... 28
SUPErseSSION CSV @XAMPIE .ooviiiiiiiiieciie et 29
Retirement CSV file @XamPleoviiiiiiiicece e 30
XSLT transformation for XIML.......cooeiiiiicceeceee e 32
XSLT transformations files for the custom XML format (contained in the xml folder)..33
GUI-languages folder, French file StruCture..........oovoovioiiccieccceeeeeee e 33
Usage example. Place this piece of code to retrieve the translated word in the file....33
Structure of the Re3gistry PACKageooveiiviiiiiieeeeeee e 36
Executing the create-tables.sql script from pgAdminillcc.coviiiiiiiiiiiiieeee, 38
Nineteen tables created and populatedccoooviiiiiiiiiii e 39
Usual Tomcat installation file StrUCtUreccoooiiiiii e 40
Default authentication Methodcoooiiiiii e, 44
SHiIr0.iNT USEIS SECLION Loiiiiiiiiii et ettt et e e earee e 45
Authentication page to access the Re3gistry software administration panel 46
Data management SYSTEM PAZE ...coouiiiiiiiie ettt e e 47
‘Add data file" WINAOW ...ooiiiiiiiii e 47
Procedure details in the data management system panelc.cccooeeviiiiiiiiiii e, 48
Produced data in the ‘custom’ folder for the ‘neutral-example’.......cccccoovveeeiiiicineeennnn. 50
Windows-deploy.Dat CONTENTS.......oiiii e 50
Popup window allowing creating or updating an RSSfilecocovviiviieiciiiieeee 51
Example of content-negotiation Parameters........ccuei e ieee e 53
NVAr FIE BXAMPIE oo e 54
Web service requests - Direct URL eXample ...c...oooviioiiiiiiic e 54
Paste the webapp folder into the exported data folderccoeoovviiviiciiieicieee 55
Proposed structure to locate he webapp files and the data files......cccccoeevvveeiiiiiininnn. 55
Properties in the CoONf.pNP filE ..o e 56
conf.php file opened iN NOTEPAU++.....coiiiiii e 56
Property in the logger.xml configuration file where the log file is defined 57

Figure 38: httpd.conf file CONTIGUIAtIoNocviiiic e 57
Figure 39: Settings to configure the HTTP SEIVEI ... 58
Figure 40: app_data folder structure after @ditingc.c.oovvieiii e 59
Figure 41: Configuration of the solr.XmIfile ... 60
Figure 42: New ‘registry’ collection fOr SOIMo 60

Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:

Re3gistry Software documentation

SOIr admMiNiStration PANELcvviiiiii e 61
Example of definition of solr endpoint in the conf.php ...cccooovioiiiiiii, 61
command to update the indexing of SOIr ..o 62
Querying indexed contents within the solr administration panel,cc.cccoevvieiiene. 62
Re3gistry generic user interface serving the ‘neutral-example’ registers contents......63
Autocomplete FUNCHION ... 63
Generic URL to get the ROR file in the re3gistry.....ccccoovoiiiiiiiiiiiiccceeeee e 64

Fields of registry table of the database........c.coeoeiiiiiiiic e, 65
Fields of reference table of the databasecccoeieiiiiiiiiicc e, 66
LangUAgE CONTIGUIATION .. .ciiiiiieit ettt et 66
Definition of the register STatUS......ciiiiiiiece e 67
Register section Of the SCHPTioiiiii e 68
itemclass SECtion Of the SCIIPT c..iiuiiiiicecce e 68
Fields in the Localization table of the database........c.cccovviiiiiiiiiiiic e, 69
|0CAlISATION SETEINES .viiviiiii ettt sae e ae e 70
Example of localisation file for the English [anguagec..ccoeeviiiiiiiiciiecc, 70
Settings in Open Office Calc to open appropriately he Re3gistry import actions files..72
Re3gistry import action files in a spreadsheet (Open Office Calc)covvvevveeiiiiiiiieennn. 72
Re3gistry import action files in a notepad program (Notepad++).....c.ccccoevvveeviievieennnrnnn. 73
Example of an addition file with an additional customised attribute in a simple register

... 73
Example of addition in hierarchical register using the addition.csv of its itemclass74
Example of invalidation of an itemMc.oooiiiii e 74
Creation of the second level of a hierarchical register........cccccooiiiiiiiiiiiiice e, 75

Figure 66: XSLT files needed to support the conversion in HTML formats for the simple and
NEIAICNICAl FEEISTEIS .ttt ettt e et e et e e et e e eaaeeeeaneas 75

Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:

Addresses theme within the theme register of the INSPIRE Registryc.ccccoveevvieennen. 80
Restriction code code list within the code list register of the INSPIRE Registry 81
Example of configuration string for the ‘Status’ static page.......ccocevvveeviieeiic e, 94
Loading the project with NetBeans IDEcccooiiiiiiiiiicccece e 99
EXAMPIE POM TIlE et 100
Creating new project from the project browser.......ccccocveiviiiiiiiicciece e 105
Project tYPe SEIECHION . ..ciiie e 106
MOAUIE NMAIME .ot ettt e et 106
POM @dit @XAMIPIE coviiiiiie e et 107
CoNStaNTS.JaVA EXAMIPIE .eiiiieiii e 107
Creation of the module's folder. ... 108
ModUlE's ProPerties file ... e 109
Localization folder for the new modulecovooiiiiiiiee e 110
Localization properties folder 111
Module's localization properties file ... 112
LOZEEr CONTIGUIATIONS ..vii ittt et e 113

http://ies-intranet.jrc.it/h06/Shared%20Documents/Re3gistryDocumentation/Re3gistryV1.3_Documentation-Draft.docx#_Toc467579177

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:

Re3gistry Software documentation

Field structure in the addition CSV fileouiiiiiiiii e 24
CSV fields for the clarification data file.......ooviiiii i 26
CSV fields for the supersession data file ..o, 27
CSV fields for the invalidation data file......ccviiiii i 28
CSV fields for the retirement data file ..o 29
Analyser check and report message type by action.........ccccoovieviiiiiiiiiccicce e, 30
PrOCEAUIE STATUSES ..uvvieeieeeiee et e e e e e e et e e e ettt e e e e etreeeeeaaaeens 35
RESTIUI URL @XAMIPIE 1.ttt 53

10

Re3gistry Software documentation

Abbreviations
A Reusable INSPIRE Reference Platform
Comma Separated Values file
European Commission
European Commission Authentication Service
GUI Graphical user interface
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
INSPIRE INfrastructure for SPatial Information in Europe

Interoperability Solutions for European Public Administrations
Joint Research Centre
Hypertext Preprocessor

POM Project Object Model
Register Of Registers

sSQL Structured Query Language
Uniform Resource Identifier

URL Uniform Resource Locator
Representational State Transfer
Really Simple Syndication
Extensible Stylesheet Language Transformations
Web application

11

Re3gistry Software documentation
Overview

Bibliography

ISA Interoperability Solutions for European Public Administrations
http://ec.europa.eu/isa

INSP-DIR Infrastructure for Spatial Information for Europe (INSPIRE) Directive 2007/2/EC
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32007L0002

WTF The EU Water Framework Directive - integrated river basin management for
Europe
http://ec.europa.eu/environment/water/water-framework

SEIS Shared Environmental Information System

- http://ec.europa.eu/environment/seis/

ISO-19135 Geographic information -- Procedures for item registration -- Part 1:
Fundamentals

http://www.iso.org/iso/home/store/catalogue ics/catalogue detail ics.htm?cs
number=54721

INSPIRE theme register
http://inspire.ec.europa.eu/theme
INSPIRE registry
http://inspire.ec.europa.eu/registry
INSPIRE code list register
CODELIST http://inspire.ec.europa.eu/codelist
Apache HTTPD - Content negotiation
http://httpd.apache.org/docs/2.4/content-negotiation.html
NetBeans IDE
https://netbeans.org
Apache HTTPD server
HTTPD https://httpd.apache.org
Apache Tomcat server
TOMCAT http://tomcat.apache.org
APACHE- Apache Configuration files

CONFIG- https://httpd.apache.org/docs/current/configuring.html)
FILES

“elles=lin e Eclipselink Java persistence solution
http://www.eclipse.org/eclipselink

SHIRO Apache SHIRO
http://shiro.apache.org

pgAdmin PostgreSQL administration and management tools
https://www.pgadmin.org

12

http://ec.europa.eu/isa
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32007L0002
http://ec.europa.eu/environment/water/water-framework
http://ec.europa.eu/environment/seis/
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=54721
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=54721
http://inspire.ec.europa.eu/theme
http://inspire.ec.europa.eu/registry
http://inspire.ec.europa.eu/codelist
http://httpd.apache.org/docs/2.4/content-negotiation.html
https://netbeans.org/
https://httpd.apache.org/
http://tomcat.apache.org/
https://httpd.apache.org/docs/current/configuring.html
http://www.eclipse.org/eclipselink
http://shiro.apache.org/
https://www.pgadmin.org/

Re3gistry Software documentation
Overview

1. Overview

1.1. Whatis the Re3gistry?

The Re3gistry is a reusable open source solution for managing and sharing ‘reference codes’. It
provides a consistent central access point where labels and descriptions for reference codes can
be easily browsed by humans and retrieved by machines.

Public administrations, businesses and citizens regularly exchange data across borders and sectors
using reference codes. The usefulness of the reference codes depends on their proper
management. Shared codes cannot change or simply disappear over time, all versions of a code
need to be traceable and properly documented.

1.2. Features and capabilities

= (CSV data import with consistency checking

= Highly flexible and customisable

= Supported formats: HTML, XML, JSON, RDF, Atom, CSV

= Formats that can be easily customised or new formats added through transformation files

= An underlying model for register items that can also be easily customised

= Support for multi-lingual content

= Support for versioning

= RESTful APl with content negotiation

= Free-text search

= Support for web service deployment

= Highly performant access to register content

= Integration with ECAS authentication

= The solution has been developed following the Standard /SO 19135 ‘Procedures for item
registration’ [ISO-19135].

= Externally governed items referenced through the URI

= Support to the INSPIRE register federation format (RoR)

1.3. Getting the software

The Re3gistry software is freely available for download at:
https://joinup.ec.europa.eu/software/Re3gistry/release/all

To provide feedback on the software we kindly invite you to contact us at: inspire-registry-
dev@jrc.ec.europa.eu

13

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32553
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32553
https://joinup.ec.europa.eu/software/re3gistry/release/all
mailto:inspire-registry-dev@jrc.ec.europa.eu
mailto:inspire-registry-dev@jrc.ec.europa.eu

Re3gistry Software documentation
Overview

1.4. License

The Re3gistry is released under the European Union Public Licence - EUPL v.1.1 2.

1.5. Background

The European Union (EU) Member States are currently implementing the INSPIRE Directive [INSP-
DIR] and related regulations. Technical guidelines® for INSPIRE’s implementation, based on
existing international standards, have been developed or are currently under development.
Interoperability between systems is, however, being limited by varying ways of implementing
standards, the regular evolution of standards and challenges in coordinating changes between
standards, alongside varying choices in the technologies being adopted.

To further address these interoperability issues and provide support to the Member States, the
platform will provide guidance, collaboration, sharing of best practices and approaches and a
reference implementation of common components through the following activities:

Inventory of

o Existing INSPIRE components from the Open Source community

o Components used within the Member States to implement INSPIRE

o Missing components
Selection of other policies and initiatives from other sectors (such as INSPIRE, Water
Framework Directive [WTF], Digital Agenda for Europe, open data, Shared Environmental
Information System (SEIS) [SEIS] etc.;) requiring exchange and sharing and maintenance of
spatial data sets and services
Selection of the missing components and/or functionalities. Multilingual support is
envisioned where required
Support Open Source projects to develop the missing items and produce the related
documentation (installation guides and technical documentation in several languages)
Selection and development where required of conformance test suites
Set up a collaborative platform to share and maintain the components.

The outputs of this work will also appear on the ISA programme collaborative platform, JoinUp?,
to aid wide re-use.

2 https://joinup.ec.europa.eu/sites/default/files/eupll.1.-licence-en 0.pdf

3 http://inspire.ec.europa.eu/inspire-technical-guidance/57753

4 https://joinup.ec.europa.eu/software/re3gistry/description

14

https://joinup.ec.europa.eu/sites/default/files/eupl1.1.-licence-en_0.pdf
http://inspire.ec.europa.eu/inspire-technical-guidance/57753
https://joinup.ec.europa.eu/software/re3gistry/description

Re3gistry Software documentation
Overview

1.1. Acknowledgments

As part of the Interoperability Solutions for European Public Administrations (ISA) Programme?
[ISA], the European Commission’s (EC) Joint Research Centre (JRC) is establishing A Reusable
INSPIRE Reference Platform (ARE3NA) which is identifying and developing common components
for the successful implementation of the INSPIRE Directive [INSP-DIR].

The work on the Re3gistry addresses a missing component of INSPIRE as an open source solution
for use in other contexts, including those who want to manage multilingual code lists in various
levels of public administration in Europe.

This software has been engineered by the ISA founded resources Daniele Francioli and Emanuela
Epure.

We are also grateful for the review of this document to Lorena Hernandez Quirds and Robin S.
Smith.

*.isa http://ec.europa.eu/isa/actions/01-trusted-information-exchange/1-
g * 17action_en.htm

ARe3NA https://joinup.ec.europa.eu/community/are3na/description
Re3gistry software https://joinup.ec.europa.eu/software/Re3gistry/home

INSPIRE registry service http://inspire.ec.europa.eu/registry/

1.2. Whatis new in the Re3gistry 1.3

This is the version 1.3 of the Re3gistry software.
The improvements and changelog of this version are:

= Support to the external items, referenced through the URI with the possibility to store also
additional metadata (like the label, status, etc.).

= Support to the INSPIRE register federation format (RoR)

= Bug fixes

5 http://ec.europa.eu/isa/index_en.htm

15

http://ec.europa.eu/isa/index_en.htm
http://ec.europa.eu/isa/actions/01-trusted-information-exchange/1-17action_en.htm
http://ec.europa.eu/isa/actions/01-trusted-information-exchange/1-17action_en.htm
https://joinup.ec.europa.eu/community/are3na/description
https://joinup.ec.europa.eu/software/re3gistry/home
http://inspire.ec.europa.eu/registry/

Re3gistry Software documentation
Understanding the Re3gistry

2. Understanding the Re3gistry

2.1. The Re3gistry information model
The Re3gistry software populates the registry contents from the importing of simple text-based

data files. Then it organises and exports the data in different formats. The produced files can then
optionally be served online through a customisable web service.

2.1.1.The information model components

A simple representation of the system’s information model is shown in Figure 1: Simplified
information model.

Registry

Register

ItemClass
Item |

Collection

Parent

Status Successor CustomAttribute

CustomAttributeValue

Language
representation

I
Language

Figure 1: Simplified information model
2.1.1.1. The registry component
A registry is an information system on which registers are maintained [ISO 19135].
2.1.1.2. The register component

16

Re3gistry Software documentation
Understanding the Re3gistry

A register is a single controlled collection or a list of items with unique identifiers. Each register is
operated on behalf of some owner organisation that provides the authority for the collection.

The type of item that can be entered in a register is completely open, that is anything which can
be given a Uniform Resource Identifier (URI) can be registered.

2.1.1.3. The itemclass component

The itemclass represents a set of items with common properties. It defines a group of items
contained in a specific register.

For example, in a ‘theme register’, such as the INSPIRE Theme register [INSP-THEME], the
itemclass of the items contained can be identified as ‘theme items’.

Itemclasses can have parent/child(s) relationship within the same register. In this case the register
is a hierarchical register.

For example, in the INSPIRE Registry [INSP-REG], the ‘code list register’ [INSP-CODELIST] has two
itemclasses: Codelist and CodelistValue. More specifically, the CodelList itemclass is the parent of
the CodelistValue one. The CodelistValue itemclass contains the items that are part of the ‘Code
List’ collection.

The ‘collection’ relation and the hierarchy between the itemclasses is used to handle hierarchical
registers.

2.1.1.4. The item component

The items are elements that can be contained in a register. In a hierarchical register, an item can
also be a container (collection) of other items.

For example, in the INSPIRE registry [INS-REG], the itemclass ‘Codelist’ could contain other items
(items with itemclass ‘CodelistValue’). The contained item (the ‘code list value item’), indicates
which collection it belongs to by means of the collection id field in the import file.

Another type of relation between items of the same itemclass is the parent/child relation. This
kind of relation is provided by the parent id field in the data import file. This field represents the
reference to the 1ocal id of the parentitem.

The parent item and the child item shall be in the same itemclass. If an item is part of a collection,
it can have a parent contained in the same collection.

2.1.1.5. The status component

Each item has a status as defined in /SO 19135-1:

= Valid: the item has been accepted. It is recommended for use, and has not been superseded
or retired.

17

Re3gistry Software documentation
Understanding the Re3gistry

Invalid: a decision has been made that a previously valid register item contains a substantial
error and is invalid, and will normally have been replaced by a corrected item.

Submitted: the item has been entered into the register, but the control body has not accepted
the proposal to add it.

Superseded: the item has been superseded by another item and is no longer recommended
for use.

Retired: A decision has been made that the item is no longer recommended for use. It has not
been superseded by another.

2.1.2.Standard and customised attributes

Each element represented by the Re3gistry has a standard list of attributes.
2.1.2.1. Registry standard attributes

Identifier of the registry
Label Label of the registry

Content Description of the purpose for which the registers and their items managed in
summary the registry are made available to potential users.

Registry Person or organization responsible for the day-to-day management of the
manager registry

2.1.2.2. Register standard attributes

Identifier of the register
Label Label of the register

Content Description of the purpose for which items in the register are made available to
summary potential users. It should also specify any limits to the scope of the register and
identify the types of applications for which the items are intended.

Owner Organization that establishes a register

Register Organization to which management of a register has been delegated by the register
manager owner

Control Group of technical experts that makes decisions regarding the content of a register.
body

Submitter Organization authorized by a register owner to propose changes to the content of
a register

Contact Name or position of the person who serves as a point of contact for information
point about the register owner and the register

License The license under which the register content is being made available

The information related to the registry and the register can be configured and edited in the system
during the installation process (Refer to section 3.4 Database configuration).

18

Re3gistry Software documentation
Understanding the Re3gistry

2.1.2.3. Item standard attributes

Identifier of the item

Label of the item

Definition of the item (precise statement of the nature, properties, scope
or essential qualities of the item)

Description of the element (statement of the nature, properties, scope, or non-
essential qualities of the item but are not specified by the definition)

Status of the item

2.1.2.4. Custom attributes

The custom attributes are designed to add further information out of the standard attributes that
by default are available for any item.

The value contained in the custom attributes can be localised like the standard fields.

2.1.3.Language representations: localisation

The Re3gistry has two different ways of managing multiple language representations.

= The Re3gistry software user interface uses a localisation file to translate the Graphical user
interface (GUI) of the management console. This file is not related to the translation of the
contents of the registry itself.

Currently the software package only provides English and Italian translation files for the Re3gistry
administration panel.

= The data processed and produced by the Re3gistry has in turn two ways of handling the
multilingualism:
o The data localisation, included in the import data file;
o The GUI! localisation, included in the web service’s webapp configuration.

By using the examples contained in the package, you should be able to load and export the
sample data in all the languages supported by the INSPIRE registry service [INSP-REG].

19

Re3gistry Software documentation
Understanding the Re3gistry

2.2. The Re3gistry system architecture

2.2.1.Modules overview

The Re3gistry handles the entire data flow process for managing register item: from the data
import to the export of every item in different formats.

To do so, the system orchestrates a set of modules. There is a common module, named Registry
core module, implementing the basic features, and additional modules taking care of other
functionalities. Figure 2, shows a schematic representation of the system.

More specifically, this package is bundled with:

= thedata import module, responsible for importing and editing data;

= thedata staticization module, responsible for saving the data as static files in
different formats; and,

= the deployer module, responsible for deploying the static files produced to the target
production server.

HTMLS5

User interface

Data import Staticizer
Module

Figure 2: Schematic system description

Figure 3, instead, gives a complete overview of the Re3gistry and the rest of components required
to provide a RESTful web service.

20

Re3gistry Software documentation
Understanding the Re3gistry

File system
Import ZIP He tpioety
software Registry core
I Addition gistry xml, json, RDF, ...
csv
: 1
Supersession Data import Data staticization
csv
Module Module webapp
I Clarificati 2
cs:n ication T 1 T
Invalidation * Contentnegotiationto REST http
csv P e XSLT handle language and ¢ requests
contenttype
Retirement * urlrewritingto handle the hitp responses
ot URI —>
Apache HTTPD

Figure 3: System description
The following paragraphs provide more detailed description of every component involved.

2.2.2.Registry core module

The registry core module contains the basic objects of the information model and database
operations required by the system.

2.2.3.Data import module

The data import module is responsible for the data operations that can be performed on the
registers.

The input for this module comes from the import data file (described in detail in section 2.2.3)
which is a compressed file in zip format composed of files in CSV format whose name matches
with the operations to process per register.

During the import of data, the data import module performs different testing to ensure the data
consistency within the register.

The data import module procedure performs the following actions:

1. Format check: checks the correctness of the structure of CSV files, as described in
section 2.2.3.1.2

2. Data analysis: checks the data semantically by verifying the links between data and its
consistency, as described in section 2.2.3.2 Data analyser.

3. Data storage: saves in the database the information provided by the CSV files, as
described in section 2.2.3.3 Data storage.

21

Re3gistry Software documentation
Understanding the Re3gistry

An important concept is the ‘operating language’. This property identifies the master language: a
language representation that shall be always available.

For example, if the operating language is set to English, and a new item has to be added in French,
the addition file shall necessarily also contain the item in the English.

To configure the master language, check how to configure the Re3gistryData.properties file.
2.2.3.1. Import data file

The Re3gistry reads the data to be imported from the data import file (zip file). The zip file structure
is described in the following paragraph.

2.2.3.1.1. Data file structure

The root of the zip file contains one folder for each itemclass involved (for the definition of
itemclass, refer to 2.1.1.3 The itemclass component).

The name of the folder has to be exactly the same name of the itemclass, including the case (the
reference to the register is taken through the itemclass, which is linked to the register in the
information model).

Each of these folders contain those CSV files related to the action to be performed on the specific
itemclass. The files are named with the name of action in lowercase (See Figure 4).

Figure 4: Example of a zip file structure

import.zip
ApplicationSchema/addition.csv
ApplicationSchema/clarification.csv
Theme/supersession.csv
Theme/retirement.csv

Codelist/invalidation.csv

The zip data files has to contain only those the files and folders required to perform the intended
actions. Those files that are not needed should not be part of the zip.

For example, the sample zip data file provided in Figure 4, will perform:

= addition(s) and clarification(s) for the ApplicationSchema itemclass;
= supersession(s) and retirement(s) for the Theme itemclass;
= invalidation for the Codelist itemclass.

2.2.3.1.2. Internal and external items

The Re3gistry is able of storing items as well as referencing externally governed items.
The difference between the two types of items is:

22

Re3gistry Software documentation
Understanding the Re3gistry

= Internal items: these items are defined and governed internally within the registers
contained in the registry system. This is the standard type of items. All the information
about these items, such as the label, definition, status etc., are stored in the Re3gistry
database.

= Externally governed items: these items are defined and governed in an external register.
The Re3gistry can store these items by referencing them. This means that for these items,
the only information needed is the URI of the externally governed item. These items can
optionally store other information like label, status or other fields. A typical scenario for
these items is the register extension. In this case, if a register A is extending a register B,
the register A shall contain all of the element of B plus the extended element defined in A.
In this case, the items defined in the register B will be referenced using the external item,
whereas the extension items defined in A will be internal items.

2.2.3.1.3. Data actions and CSV formats

The system supports five type of actions which matches with the available CSV files for every
itemclass.

= Addition

= (Clarification
= Supersession
= |nvalidation
= Retirement

2.2.3.1.3.1. Addition
This action adds the specified items into the appropriate register.
The CSV file for this action is composed of two different types of fields:

= Main fields
= Additional fields

The values for the main fields must be provided even if no values are available. If a value is not
available, the field will remain blank among the CSV defined separator for the Re3gistry “|”,
without any space character (See Figure 5).

Figure 5: Encoding of the addition CSV file when several values are not available

valuel | | |value2|value3| | |valued| |

Moreover, there is a set of mandatory fields required for every type of action.

However, if you wish to change this default behaviour, configure as wished the data module
properties file. The property that defines which are the mandatory fields is contained in

Path <root folder>/Project package 1.X/binaries/Re3gistry-1.X/WEB-
INF/classes/configurations/modules/Re3gistryData.properties:

data.mantatoryfields.<action name>=<field>.<field>. ..

23

Re3gistry Software documentation
Understanding the Re3gistry

The Figure 6 , shows how the mandatory fields are defined.

Figure 6: configuration of the mandatory field property

Data file header:

LocalId|ParentLocalId|CollectionLocalld]|Language|Label |Definition|Descriptio
n|Status|Comment | *Theme[t, £, f,t] | *UMLName[t, £, £, f]

Property in the properties file:

data.mantatoryfields.addition=0.3.3.7

List the index of the field as in the property above to set a common field
mandatory.

The additional fields by us called custom attributes, allow adding extra information by the user to
fit its needs. The properties of these fields are described in Table 1.

Table 1: Field structure in the addition CSV file

\VETEIde]aA Localld The local identifier (id) is used to identify an item inside the
fields (mandatory) register and to create the URI of the item. If an item has a
local identifier such as ‘Localld’, the URI will be composed as
follow: ‘http://site.ext/register/localld’. This field has to be

filled in two different way depending on the type of item:
= The internal items will specify the uriname (e.g.

activityCodeValue);

= The external items will specify the URL pointing to
the external resource. The URI shall be resolvable

through an HTTP request (e.g.
http://someRegistry/someRegister/activityCodeVal
ue).

Parentlocalld This is the reference to the parent item

CollectionLocalld This is the reference to the collection. If this field is set then
an item is part of a collection.

Language The language of this item. If there is multiple language for

(mandatory) each item, the row has to be duplicated, hanging the
language related fields.

Label (mandatory) This contains the label of the items

Definition This contains the definition of the system

Description This contains the description of the items

Status This contains the status related to the current item. More

(mandatory) details about the code to be used in this field can be found
in Table 2.

24

Re3gistry Software documentation
Understanding the Re3gistry

Comment A textual comment for the change log stored by the system
for each action.

Additional (custom attribute/ The custom attribute headers define the properties of the

EIGS header additional fields.

descriptor) Custom attributes must be added to the CSV file after the

standard fields and have the following format:
*custom_attribute_name[required,
multivalue,coded,foreignkey]
The value in the square parenthesis is a Boolean value, and
can be t’ (for true) of ¥’ (for false): e.g. *extensibility[t,f,f,f].
The meaning for each of the properties set in the square
parenthesis is described in the following rows.

Required This indicates that the custom attribute is required. The
whole data rows in the CSV must have this value in order to
be imported.

Multivalue This indicates that this custom attribute could have more
than one value. The values are separated by comma. E.g.
...|ab,cd,ef

Coded If this property is set to true, the custom attribute takes its
values from a list of values defined in a specific database
table. More details about the information model can be
found in Annex A (This feature is not implemented but is
foreseen in the future).

Foreignkey If this property is set to true, the value in this field is
a Localld of another item in the register. The name of the
custom attribute has to be the name of the itemclass
referenced.

Figure 7: Addition CSV example - internal items

Import.zip -> ApplicationSchema/addition.csv

LocalId|ParentLocalId|CollectionLocalld|Language|Label|Definition|Descriptio
n|Status|Comment | *Theme[t, f, f,t] | *UMLname [t, f, f, f]

sd| | |en|Species Distribution]| | |valid]| |sd|SpeciesDistribution
sd| | |fr|Répartition Des Especes| | |valid| |sd|SpeciesDistribution

This example contains an addition of the item 'sd’ in the ApplicationSchema
register. There is the mandatory header line and two rows (the 'sd’ item in
two languages - one row for English language and the other for French).

In the example in Figure 7, the custom attribute (name: Theme) is defined as foreign key. In this
case, the name of the custom attribute (in the descriptor line — the first line of the csv) shall be
exactly the name of the itemclass related to the item specified as value. The value of the custom

25

https://ies-svn.jrc.ec.europa.eu/projects/registry-development/wiki/Re3gistry_1_2_documentation#_Annex_A

Re3gistry Software documentation
Understanding the Re3gistry

attribute shall be the Localld of the referenced element. Only items that are not part of a collection
(with the Collectionld field empty) can be pointed by a custom attribute.

If the item is externally governed, the only mandatory information to be provided is its URI. The
other information are optional

Figure 8: Addition CSV example - external items

Import.zip -> ApplicationSchema/addition.csv

LocalId|ParentLocalId|CollectionLocalld|Language|Label|Definition|Description
| Status | Comment | *Theme [t, £, £, t] | *UMLname [t, £, £, f]

sd| | |en|Species Distribution]| | |valid]| |sd|SpeciesDistribution
http://someRegistry/someRegister/abe| |||]]]]]

http://someRegistry/someRegister/def || |en|def]| || |||

2.2.3.1.3.2. Clarification

This action allows editing and correcting the register items.

Every time a clarification action is performed, the version of the item is increased.

This action data file, shall be filled only with the fields that need to be updated (apart from the
LocallId and the language to identify every item). Only the filled fields will be updated; the field
left blank in the action file, will not be updated, and will remain as it is in the register.

The clarification action cannot change the collection of an item. Nevertheless, the clarification CSV
file contains the CollectionLocal1d field in order to unambiguously identify the item. Actually,
in the same data file, different items that are part of a collection may have the same Localld but
different Collectionlocalld. In the clarification (but also in the supersession, retirement and
invalidation) the item has to be identified in the data file by
its Localld and CollectionLocalld (if available).

The clarification’s CSV file is very similar to the addition CSV file but it has not the status field.
The clarification CSV structure is described in Table 2 and example of how to fill it instead is
provided in Figure 9.

Table 2: CSV fields for the clarification data file

Localld (mandatory) The local identifier (id) is used to identify the item to be
updated

ParentlLocalld

CollectionLocalld

Language The local identifier (id) is used to identify the language

(mandatory) representation of item to be updated

Label

Definition

Description

26

http://someregistry/someRegister/abc||||||||||

Re3gistry Software documentation
Understanding the Re3gistry

Status
Comment
Additional (custom attribute/ In the clarification data file, all the custom attribute

fields header descriptor) related to the current itemclass shall be specified in the
first row as the addition CSV.

Figure 9: Clarification CSV file example

Import.zip -> ApplicationSchema/clarification.csv

LocalId|ParentLocallId|CollectionLocalId]|Language|Label|Definition|Descriptio
n|Comment | *Theme[t, £, £, t] | *UMLname [t, £, £, £]

sd| | |en|Species Distribution changed]| ||| |changed custom attribute

sd|||fr|| Ajouter la définition en francais ||| |

This example contains a clarification CVS file for the ApplicationSchema
itemclass (linked to the ApplicationSchema register). The file contains only
the 'sd’. Item, to be modified in the 2 different language:

English: the label and the 'UMLname’ custom attribute are edited;

French: the definition is added

2.2.3.1.3.3. Supersession

This action allows superseding an item. The supersession CSV file format is quite different from
the previous two because it only requires the reference to the item to be superseded and to the
successor item(s).

The structure of the supersession CSV is shown in Table 3 and example of its usage is available in
Figure 10.

The successor item(s) shall be available in the database or shall be present in the addition csv of
same itemclass data file containing the supersession csv.

Table 3: CSV fields for the supersession data file

Code Description

SupersededLocalld The local identifier (id) is used to identify the item to be
(mandatory) superseded

Sl else el e kel e The optional collection local identifier (id) is used to identify the
item to be superseded (to be provided if the item is part of a
collection)

Newlocalld (mandatory) The local identifier (id) is used to identify the successor item(s).
The identifier can be a single identifier or multiple identifier
separated by comma (e.g. ac,mf).

27

Re3gistry Software documentation
Understanding the Re3gistry

In case of multiple successor elements that are part of a

collection, all of the specified successor shall belong to the same

Collectionld.

If the successor belong from different Collection, one row for

each collection shall be specified in the supersede file.

The optional collection local identifier (id) is used to identify the
successor item (to be provided if the item is part of a collection).

A textual comment for the change log stored by the system for

each action.

Figure 10: Example of supersession CSV file

Import.zip -> ApplicationSchema/supersession.csv

SupersededLocalld|SupersededCollectionLocallId|NewLocalId|NewCollectionLocall
d|Comment

sd| |ad]| |this is a comment
mf| |ad,ac| |this is a comment

This example contains a supersession CSV file for the ApplicationSchema
itemclass (linked to the ApplicationSchema register). The file contains two
supersessions:

the 'sd’ item, with successor item ‘ad”’.

the 'mf’ item, with successor items ‘ad’,’ac’.

2.2.3.1.34. Invalidation

This action allows invalidating an item. The invalidation CSV file format is almost the same as the
supersession CSV file, but there is the recursive’ flag too (explained in Table 4), because it only
requires the reference to the item to be superseded and to the successor item(s). See in Figure
11, an example of its usage.

The successor item(s) shall be available in the database or shall be present in the addition csv of
same itemclass data file containing the supersession csv.

Table 4: CSV fields for the invalidation data file

Code Description
Localld (mandatory) The local identifier (id) is used to identify the item to be invalidated

CollectionLocalld The optional collection local identifier (id) is used to identify the
item to be invalidated (to be provided if the item is part of a
collection)

SuccessorlLocalld The local identifier (id) is used to identify the successor item(s).
(mandatory) The identifier can be a single identifier or multiple identifier
separated by comma (e.g. ac,mf).

In case of multiple successor elements that are part of a collection,
all of the specified successor shall belong to the same Collectionld.

28

Re3gistry Software documentation
Understanding the Re3gistry

If the successor belong from different Collection, one row for each
collection shall be specified in the supersede file.
Slleesieieesedle i boles il The optional collection local identifier (id) is used to identify the
successor item (to be provided if the item is part of a collection)
Recursive This field tell the system to recursively invalidate any children
items or linked items to the invalidated item. To set this flag put
the word ‘true’ in the field, otherwise leave it blank.

Comment A textual comment for the change log stored by the system for
each action.

Figure 11: Supersession CSV example

Import.zip -> ApplicationSchema/invalidation.csv

LocalId|CollectionLocallId|SuccessorLocalId]|SuccessorCollectionLocalId|Recurs
ive|Comment

sd| |ad]| | |this is a comment

so| |ac,mf| |true|this is a comment

This example contains an invalidation CVS file for the ApplicationSchema
itemclass (linked to the ApplicationSchema register). The file contains two
invalidations:

the 'sd’ item, with the successor item ‘ad’. This is not recursive and
contains also a comment.

the 'so’ item, with the successor items ‘ac’ and 'mf’. This is recursive and
contains a comment.

2.2.3.1.3.5. Retirement

This action allows retiring an item. The supersession CSV file format is the simplest one. It only
requires the reference to the item to be retired plus a recursive flag (The fields for this action are
explained in Table 5 and an example of its usage in Figure 12).

Table 5: CSV fields for the retirement data file
Code Description

The local identifier (id) is used to identify the item to be retired
(mandatory)
The optional collection local identifier (id) is used to identify the item to be
retired (to be provided if the item is part of a collection)
Recursive This field tell the system to recursively retire any children items or linked

items to the retired item. To set this flag put the word ‘“true” in the field,
otherwise leave it blank.

A textual comment for the change log stored by the system for each action.

29

Re3gistry Software documentation
Understanding the Re3gistry

Figure 12: Retirement CSV file example

Import.zip -> ApplicationSchema/retirement.csv
LocalId|CollectionLocalId|Recursive|Comment
sd| | |this is a retirement

so| |true|this is a retirement

This example contains a retirement CSV file for the ApplicationSchema
itemclass (linked to the ApplicationSchema register). The file contains two
item, to be retired:

the 'sd’ item. This is not recursive and contains also a comment.

the 'so’ item. This is recursive and contains a comment

2.2.3.2. Data analyser

The data analyser component performs a number of testing in order to make sure that the data
file contains consistent data.

There are two type of messages raised by the analyser:

= Errors: these are locking problems; the data file shall be corrected before the system can
continue its work.

= Warnings: these are non-locking problems; the user is notified about the problem but the
import can continue by setting the ‘ignore warning’ flag available in the web interface.

In Table 6, there is a list of the inspections performed by the data analyser.
Table 6: Analyser check and report message type by action

Addition Clarification ~ Supersession Invalidation Retirement

Item already in the database Error - - - -

Item not available in the
- Error Error Error Error
database

Custom attribute (with

foreign key flag true)

pointing to an item not Error Error = = =
available in the database nor

in the current addition file

Custom attribute (with

foreign key flag true) Warning Warning - - -
pointing to an item not valid

Item pointing to a parent

not available in the database

nor in the current addition

file

ltem pgmtmg to a parent Warning Warning i i i
not valid

30

Error Error - - -

Re3gistry Software documentation
Understanding the Re3gistry

Item pointing to a collection
not available in the database
nor in the current addition
file

Item pointing to a collection

Error - - - -

Warning - - - -

Item pointing to a successor
not available in the database
nor in the current addition
file

Item pointing to a successor
not valid

The item’s operating
language is not available

= = Error Error =

- - Warning Warning -

Error = = = =

The item’s language is not in

the list of supported Error - - - -
language

The item has collection - , Error Error Error

The item has child - - Error Error Error

The item has links (pointed
by a custom attribute as - - Error Error Error
foreign key)

The system will behave differently according to the situation found:

= |f the system finds any errors or warnings, the procedure is stopped
= In case the procedure produces both errors and warnings, the system will lock even if the
‘ignore warning’ flag is set.

In any of the above mentioned situations and also when the procedure ends successfully, an email
notification will be sent to the user. In case of errors or warning, an attachment will be
accompanied in the email to help the user fixing the found issues.

2.2.3.3. Data storage

The data storage component saves the data into the database and performs by performing the
operations described in the CSV files.

The data storage starts only after the data analyser reports that the data to process is fine.

If something goes wrong during the storage process, the user will receive an email with the
detailed list of errors, and the import will be roll-backed.

31

Re3gistry Software documentation
Understanding the Re3gistry

2.2.4.Staticiser module

2.2.4.1. Staticisation process

The ‘Staticisation” component is responsible for exporting into the file system the contents stored
in the database through the data management system procedures.

The system uses XSLT transformations files to provide the registry contents in the requested
formats.

To do so, the staticiser creates firstly the master xml files, containing a structured export of the
items stored in the database, that will be used by the different XSLT files, to produce the different
files.

The ‘custom’ folder, will contain all the files produced by the XSLT files. See section on the
configuration of the Re3gistryStaticizer.properties

2.2.4.2. XSLT

The transformation system based on XSLT is flexible to allow the user customisation by defining
the different formats to use and the structure to obtain for them.

The XSLT files translate the information contained in the master xml files to the customised file
formats. There are three types of master XML files:

= Registry: describing the registry
= Register: describing a registers
= Item: describing the items

The XSLT files shall be contained in a folder specified in the system properties file
(Re3gistryStaticizer.properties - properties files described at 3.5.2).

Each of the folders used for the XSLT transformation shall contain one XSLT file for each registry,
one for each register and one for each itemclass, as illustrated in Figure 13 and Figure 14.

Figure 13: XSLT transformation for XML

<itemclass_uriname>.<format>.xsl - items
<register uriname>.<format>.xsl - register
<registry uriname>.<format>.xsl - registry

32

Re3gistry Software documentation
Understanding the Re3gistry

@ ApplicationSchema.xml.xsl
applicationschema_register.xml.xsl
fEd CodeListxmlxs!
codelist_register.xml.xsl

& CodelistValue.xml.xs!
Document.xml.xsl

@ document_register.xml.xsl
FeatureConcept.xml.xs|

@ featureconcept_register.xml.xsl
@ Glossary.xml.xsl
glossary_register.xml.xsl
MetadataCodeList.xml.xs|

@ metadata-codelist_register.xml.xsl
MetadataCodeListValue.xml.xs|
registry.xml.xsl

Theme.xml.xsl
theme_register.xml.xsl

Figure 14: XSLT transformations files for the custom XML format (contained in the xml folder)
2.2.4.3. Static element localisation

To handle the localisation of some static elements, such as some common parts of the formats,
there is a language mapping file. The ‘gui-languages’ folder contains <language code>.xml
files, one for each language supported by the system, containing the item keys (See Figure 15)
used by the XSLT files for any static string not available in the database (See Figure 16).

Figure 15: GUI-languages folder, French file structure

<guilanguage languagecode="fr">

<item key="feedback">Retour d'utilisation</item>
<item key="powered-by">Construit avec</item>
<item key="about">A propos de</item>

<item key="contact">Nous contacter</item>

</guilanguage>

Figure 16: Usage example. Place this piece of code to retrieve the translated word in the file.

<xsl:value-of select="$languagefile/guilanguage/item|[@key="'feedback']"/>

The $languagefile variable is the path of the document containing the
translations and it is defined at the beginning of the xsl file. An example
is provided below:

<xsl:variable name="language" select="item/language/isocode"/>

33

Re3gistry Software documentation
Understanding the Re3gistry

<xsl:variable name="languagefile" select="document (concat ('../gui-
languages/', $language, '.xml'))" />

2.2.4.4. Additional information

The staticiser is responsible as well for the creation of additional files that handle the content-
negotiation (var files) and the Apache solr indexing.

The var generator generates the .var index configuration files needed to set-up the Apache
content-negotiation feature. This allows the user to use the content-negotiation approach
explained in section 5.2.1 RESTful web service .

The solr export will produce the files to be imported by the Apache solr application (one file for
each item, containing all the languages). The solr XSLT transformation produces files compliant
with the Apache solr system.

2.2.5.Deployer module

The deployer module is responsible for deploying the static files produced by the staticization
system (See 2.2.4 Staticiser module) to the target production server.

This is needed if the production server is in a different machine, or if the files in the same machine
need to be moved to another place in the same system.

The module allows to automatically take the set of static files produced and move them to the
configured target place.

To see how to configure the deployer module refer to section 3.5.2 Modifying the configuration
files.

34

Re3gistry Software documentation
Understanding the Re3gistry

2.3. Re3gistry administration panel

Since version 1.0, the Re3gistry provides a simplified interface, the ‘Re3gistry administration
panel’, to allow the user easily managing the registry contents, without the need of understanding
the underlying complexity of modules interconnection.

To understand in which step of the procedure the system is, there is a list of procedure status that
express the progress reached by the Re3gistry when handling the imported data. In Table 7, are
shown the different possible values for the procedure status.

Table 7: Procedure statuses
Checking The system is checking the data file format and analysing the data file
data consistency.

Sielfinesien The data has been checked; the system is storing the data to the database

il enilss The data has been stored to the database; the system is writing the static file
to the file system

Ceopazicel . The files has been written to the file system and they are ready for the
deployment

Imported This status indicates that the data import has successfully completed but the
export to the static files has not been done (or the export went wrong). In this
case, the export can be started manually with the specific button in the Ul.
Deployed The file has been deployed to the web server

Failed Something went wrong during one of the data procedure step. In this case, a
detailed error description is sent to the user's mail

To understand how to use step-by-step the administration panel, see section 4.1 Accessing the
Re3gistry administration panel.

35

Re3gistry Software documentation
Installing the Re3gistry

3. |Installing the Re3gistry

This section will guide the user installing Re3gistry and using it for the first time through ready-to-
use examples.

3.1. System requirements

To install the Re3gistry components the following programs need to be previously installed in the
user’s computer.

= Java SE Development Kit (JDK) 7 or higher®
= Apache Tomcat 7 or higher’
= PostgreSQL 9.2 or higher®

= ECAS for Tomcat (provided within the package) [optional - to be used only if the ECAS
authentication method is selected].

3.2. Package details

The software package, available for its download in the Re3gistry space of JoinUp?, includes: binary
files (ready to use application), source files, configuration examples and other required files.

4 | Project_package

» | binaries
> ECAS-files
4) examples
s . inspire-example
» | neutral-example
> | source
» L. webapp

Figure 17: Structure of the Re3gistry package
The structure of the package folder is as follows:

" Dbinaries: containing the Re3gistry software binary files (ready to use application).

6 http://www.oracle.com/technetwork/java/javase/downloads/index.html
7 http://tomcat.apache.org/

8 https://www.postgresgl.org/download/

° https://joinup.ec.europa.eu/software/re3gistry/release/all

36

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://tomcat.apache.org/
https://www.postgresql.org/download/
https://joinup.ec.europa.eu/software/re3gistry/release/all

Re3gistry Software documentation
Installing the Re3gistry

" ECAS-files: containing the ECAS authentication libraries and other required files. These
files will be used only if the ECAS authentication method is chosen during the Re3gistry
configuration.

" examples: containing the example files needed to install, initialise and run the Re3gistry
software as well as to create an example web service instance. Two full examples are
provided within the folder:

O inspire-example: containing a sample of the contents available in the INSPIRE
registry service,

O neutral-example: containing more generic registers related to countries and
companies.

To know more about the examples offered, refer to the readme.md file inside the example's folder.

" source: containing the source files of the Re3gistry software.
= webapp: containing the PHP web application that can be used to serve data files produced
by the Re3gistry software.

3.3. Important notes
The files contained in the ‘examples’ folder, encloses a couple of ready-to-use examples to help
the user quickly setting up and running its Re3gistry instance. To proceed with the installation

explained next, the user will need to select one of them and make sure he always takes the
configuration files relative to the example chosen, otherwise the installation will not work.

3.4. Database configuration
The database initialisation script will create the database structure and it will populate its tables

with the registry information and its registers contents. The database example scripts are available
within each of the different example files provided in the examples folder.

3.4.1.Creating a new database

Before executing the scripts, you need to create a new database in PostgreSQL that will store the
registry contents.

3.4.2.Running the SQL scripts to create tables and populating
them

Select one of the examples provided and follow the path until reaching its database subfolder:

Path: <root_folder>/Project_package 1.X/examples/<inspire-example [neutral-
example>/database

37

Re3gistry Software documentation
Installing the Re3gistry

The scripts contained in the ‘database’ subfolder are four and they need to be executed in the
following order:

1 create-table.sql
2 database-initialization.sql
3 database-localization.sqgl

The drop-table.sql Will be solely used if there is a need of resetting the database, by removing
the whole tables with its contents. Only if you are working on an existing database that needs to
be cleaned up, it will need to be executed in first place.

These scripts can be executed either by using the command line or simply by using a graphic user
interface (GUI) such as pgAdminlll usually included with the PostgresSQL installation.

To run the script from pgAdmin, make sure you are connected to the target database, open the
‘Query tool’ (inthe menu goto ‘Tools’ > ‘Query tool’ Or Ctrl-E).

From the Query tool” window, Use the ‘Open file’ button to select the respective SQL file to
run, and execute it by clicking on the ‘Execute query” button. (In the menu go to ‘Query’ >
‘Execute’ or F5). Once the script has been processed, continue by launching the following script
(See Figure 18).

+~ Query - registry1.2 on postgres@localhost:5432 - [EAARE3NA_Re3gister-Registry\Re3gistrylnstallation.. — &
File Edit Query Favourites Macros View Help

B | &] | L2 | &_| b BE ba | ¢ O registry1.2 on postgres@ocalhost: 5432 v
Scratch pad X

SQL Editor | Graphical Query Builder

Previous queries v Delete Delets All

|—— Table: reference A
CRERTE TLABLE reference
(=N

uuid character wvarying(50)
email character varying(30
reftype character wvarying(300
datecreation timestamp without time zone,
datelastupdate timestamp without time zone,
CONSTRRINT contactpoint_pkey FRIMARY KEY (uuid)

< >

Qutput pane x

Data Output Explain Messages | History ¥

NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "pk_customattribute™ for table "customattribute™ A
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "pk_itemclasscustomattribute™ for table "itemclsa
NOTICE: CREATE TABLE / PRIMARY KEEY will create implicit index "pk_customattributecode™ for table "customattrilk
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "pk customattributevalues™ for table “"customattr
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "pk_language™ for table "languagecode™

NOTICE: CREATE TABLE / UNIQUE will create implicit index "ug language_isccode™ for table "languagecode™

NOTICE: CREATE TABLE / FRIMARY KEY will create implicit index "pk_changelog™ for table "changelog”

NOTICE CREATE TABLE / PRIMARY EEY will create implicit index "pk localization™ for table "localization™

NOTICE CREATE TABLE / PRIMARY EEY will create implicit index "pk_itemsuccesscr™ for table "itemsuccessor™
NOTICE CRERTE TABLE / PRIMARY KEEY will create implicit index "pk_itemccllection" for table "itemcollection™

NOTICE: CEEATE TABLE / FRIMARY KEY will create implicit index "pk_itemparent™ for table “itemparent™
Query returned successfully with no result in 1489 ms.

OK. DOs Ln1,Col 1, Ch1 1489 ms

Figure 18: Executing the create-tables.sql script from pgAdminlll

38

Re3gistry Software documentation
Installing the Re3gistry

Once the three scripts have been launched you should have in the recently created database 19
tables already populated (See Figure 19).

1w pgAdmin Il = =
File Edit Plugins View Tools Help

FCIE%wE BE

g
|
D'blm browser j Properties | Statistcs | Dependencies | Dependents | =
5 Server Groups ~ 1
5] @ Servers (1) Property Value
£ [PostgresQL 9.2 (ocalhost: 5432) localization
Databases (4) 17624
postgres postares
i3 regisry =
= = Tablespace default
&) registry1.2 Slaa e P

Catalogs {2)
Exctensions (1)

@ schemas (1)

=€ public

13 collations (0)

Domains (0)
FTS Configurations (0)

filll FTs Dictionaries (0)

S FTS Parsers (0)
- I[g3 FTS Templates (0)
-2y Functions (0)

% Sequences (0)
£ Tables (19)
[changelog
[customattribute

[3 customattributecode

3 customattributevalue
[dataprocedure
[item

[itemdass

[itemdasscustomattribute
[itemcollection
o et T O -
[languagecode
[localization
[procedurestatus CREATE TABLE localization
[reference
[register uuid character varying(50) NOT NULL,
[registry item character warying(50),
[status itemclass character varying(50), |
[users language character varying(50) NOT NULL,
A Trigger Functions (0) register character varying(sd),
F@ Views (0) customattributevalue character varying(50),
&g Sony Replcation (0} 1ahal chavasrar varuina (A7) AT NI
=

File Edit View Teols Help

l\é’ﬂllll'lTlﬂ o it

item | itemclass | Ianguage reglster customattrib
vai vai

label defin ~
ch text
YOUR RegistRegi
Region

Gyldig

Ikke gyldig
Indsends

K] characte

vai

2

W w o e

Eratattet
Company
Tilbagetruk
Giileig

A

Ungiltig v

-- DROP TABLE localizatiom;

Retrieving details on table localization... Done. 0.00 secs

Figure 19: Nineteen tables created and populated
To run them through the shell, follow the following example.

psgl -f <example-file.sgl> <targetdatabase>

This command may need additional parameters, depending on the system configuration (e.g.
credentials, host ...).

3.5. Configuring the Re3gistry
This section explains how to install and get started with Re3gistry software, that is, the part of the

package that produces and manages the contents. Those contents can optionally be served
through the proposed webapp. To know more on that, please refer to section 0 on

39

Re3gistry Software documentation
Installing the Re3gistry

Serving the Re3gistry contents.

3.5.1.Move the binaries folder to Tomcat’s webapp folder

Go to the Re3gistry package, inside the binaries’ folder select and copy the Re3gistry-1.X’
subfolder and paste it within the Apache Tomcat’s ‘webapps’ folder.

J bin
| conf
J lib

J logs

| temp

| . webapps

| work
catalina_start.bat
catalina_stop.bat
|| LICEMSE
|| MOTICE
| | RELEASE-MOTES
|| RUNMIMG. bt
[&] tomcat_service_install.bat
[&] tomcat_service_uninstall.bat

Figure 20: Usual Tomcat installation file structure

Before moving the project’s folder, make sure that the Apache Tomcat server is not running.

To stop it, there is a ‘shutdown’ script in the tomcat’s ‘bin” folder (depending on your operative
system: Windows user, shutdown.bat; Linux users, shutdown.sh).

3.5.2.Modifying the configuration files

Once the binary files have been located in Tomcat, several configurations files need to be modified
by the user to set up its Re3gistry instance. More specifically, a set of properties must to be
updated accordingly to the user’s environment and set to fit the user’s preferences.

The files to modify are the following:

Application.properties
logcfg.xml
RegistryData.properties
RegistryStaticizer.properties
RegistryDeployer.properties

40

Re3gistry Software documentation
Installing the Re3gistry

Note: The properties to be changed are marked with the placeholder * <propertyname>_’, that is
they appear among underscore symbols. Usually, tips on how to modify the settings are given
directly in the configuration files in the form of comments.

Some examples are illustrating the placeholders are:
__DBADDRES_

_ USERNAVME_.

3.5.2.1. persistence.xml

Path : <root Tomcat folder>/webapps/Re3gistry-1.X/WEB-INF/classes/META-INF

This file provides the configuration to connect to the database. The parameters to modify are:

javax.persistence.jdbc.url URL of the database including port number and target
database name
(e.g. “jdbc:postgresql://localhost:5432/registry”).

javax.persistence.jdbc.user User of the database.
EVEEA SN leH o oJoN LSS Vel(sll Password of the database.

3.5.2.2. Application.properties

Path : <root Tomcat folder>/webapps/Re3gistry-1.X/WEB-INF/classes /configurations

This file manages the general properties of the system as the contact details, the language
preferences or the authentication methods.

To know more on how to configure the authentication methods, please go to section 3.5.3 Setting
up the authentication method

The parameters to modify are:

application.language.available The available language for the interface, specified the by
the 2 letter ISO 639-1 language code. If more than one,
separate them with a hyphen symbol (-).
Slellllesdenn B sl el e e I different languages are available there should be an
entry for each one followed by the value of the label that
will appear in the language selector

The e-mail address of the system’s contact.

The e-mail address of the sender for the system’s emails.
The e-mail address for the default recipient.

The server host SMTP email.

3.5.2.3. logcfg.xml

41

Re3gistry Software documentation
Installing the Re3gistry

Path : <root Tomcat folder>/webapps/Re3gistry-1.X/WEB-INF/classes/configurations

This file contains the settings regarding the logging system.

Log files are useful to monitor the activity of the system and particularly to discover potential
errors or warnings and its causes.

The user must update every * LoGPATH_~ placeholder with the path where he wants the log files
to be stored. More specifically, there are five types of log files that the system produces. (The
procedures in charge of producing them are known as “1og appender’)

= ‘Re3gistry’ appender produces the Re3gistry. log file

= ‘Re3gistryData’ appender produces Re3gistryData. log file

= ‘Re3gistryStaticizer’ appender produces Re3gistryStaticizer.log file

= ‘Re3gistryDeployer’ appender produces Re3gistryDeployer. log file

= Finally, the ‘Default’ appender produces the complete.log file. It contains as the name
indicates, the full logging information coming from the rest of the log files.

3.5.2.4. Re3gistryData.properties

Path : <root Tomcat folder>/webapps/Re3gistry-1.X/WEB-
INF/classes/configurations/modules

This file contains the settings regarding the data management. The properties to update are:

The folder used to save the temporary data files. If this property is
left blank, a default folder will be created directly within Tomcat’s
webapp folder.

Code of the ‘master’ language of the data contents according to the
2-letter ISO 639-1 language code.

Code(s) representing the data languages supported and handled by
the system according to the 2-letter ISO 639-1 language code

Note: If you plan to represent the registry contents in different languages, make sure they all appear
in the data.supportedlanguage property, otherwise you might find errors when trying to import
data.

3.5.2.5. Re3gistryStaticizer.properties

Path : <root Tomcat folder>/webapps /Re3gistry-1.x/WEB-
INF/classes/configurations/modules

This file contains the configurations to allow the system producing the static files from the data
available in the database for every requested format. In addition, this file contains the settings to
produce solr index data that can optionally be used to power a search engine.

42

Re3gistry Software documentation
Installing the Re3gistry

The main properties to be updated here are:

Seple e s elisienielslaigonid - Folder where the staticised and converted files will be saved.

xml.formats.list List of formats that will be handled by the system indicated
through the extension names (separated by comma if more than
one).

staticizer.formats.path Folder containing XSLT transformation files to process the data
conversion in multiple formats.

The user must make sure that in the given path there are as
many folders as formats to be produced accordingly to the
values set in the xm1. formats.1list property. The folders must
be named exactly as the indicated labels in the property
xml.formats.list and they must contain the XSLT files with the
transformation rules.

staticizer.solr.format Folder name where the solr data file will be saved

Note: to help the user using and running for the first time the Re3gistry we suggest to copy the XSL
folder of any of the examples coming in the software package /examples/<inspire-example |
neutral-example>/xsl folder and pasting it into the XSL folder created.

3.5.2.6. Re3gistryDeployer.properties [Optional]

Path : <root Tomcat folder>/webapps /Re3gistry-1.X/WEB-
INF/classes/configurations/modules

This configuration file facilitates the automatic creation of an RSS file showing the changes
occurred in the registry contents and additionally it simplifies file management tasks, moving
programmatically files across directories.

The main properties to modify are:

deploy.script.folder Folder containing the deploy script. By default, two template scripts
(to be launched either on Windows or On Linux environments) are
already included within the folder webapps/Re3gistry-1.X/WEB-
INF/classes.
This property should be updated if the user decides to locate the script
in another path. Moreover, the scripts must be edited accordingly to
the user’s environment.
deploy.rss.file Path to the RSS template file used by deployment procedure. The
news.en.xml file, available in any of the given examples folder within
the deployer subfolder, offers the base schema to produce the real RSS

olsle) s faeeiel e i Folder where the produced RSS will be stored.

43

Re3gistry Software documentation
Installing the Re3gistry

URI to be used by the deployment’s procedure when producing the
RSS file. Normally the base URI corresponds to registry’s homepage
URL (e.g. http://localhost/registry)

3.5.3.Setting up the authentication method

3.5.3.1. Available authentication methods

The Re3gistry allows choosing among two authentication methods: Apache SHIRO and the
European Commission Authentication Service website known as ECAS.

= The Apache SHIRO is suitable for any environment. SHIRO allows the connection of
different authentication method. The Re3gistry has implemented the ‘static’ user
authentication, which is managed by a simple configuration file containing the full list of
users.

= The ECAS authentication method instead, can only be used either in domains trusted by
the ECAS administrators (that is in European Commission domains) or in ‘localhost’.

To learn how to attach other authentication method than the ‘static’ one, read the own Apache
SHIRO documentation.

3.5.3.2. Choosing and implementing the authentication method

The authentication method is handled by two configuration files.

3.5.3.2.1. Application.properties

Path : <root Tomcat folder>/webapps /Re3gistry-1.X/WEB-INF/classes
/configurations

The Application.properties file includes a parameter that allows switching between Ecas and
SHIRO. By default, the authentication method is set to Apache SHIRO. (See Figure 21)

Figure 21: Default authentication method

Login type: SHIRO | ECAS
application.LoginType=SHIRO

To change of authentication method, just modify the value with the proper string as indicated in
Figure 23.

‘ Note: If ECAS method is chosen, special Tomcat libraries have to be installed.

3.5.3.2.2. web.xml

Path : <root Tomcat folder>/webapps /Re3gistry-1.X/WEB-INF/

44

Re3gistry Software documentation
Installing the Re3gistry

The web.xml file handles among other things, the authentication method settings. It must be
modified accordingly to the authentication method previously chosen in the
Application.properties file. By default, SHIRO method is set, to change to ECAS, the SHIRO
related lines must be commented while the ECAS uncommented.

To help the user in this step, some informative comments in the web. xm1 file have been added to
highlight when SHIRO and ECAS related configurations lines begin and end.

For example: To go for ECAS method, the text contained between the following lines <!--SHIRO
authentication configs--> and <!--END SHIRO authentication configs-->Sshould be
commented, that is enclosed between ‘<!—’and’ -->' symbols.

3.5.4.Adding users to SHIRO

Path : <root Tomcat folder>/webapps /Re3gistry-1.X/WEB-INF/Shiro.ini

The Re3gistry implements SHIRO through the Static File authentication mode. This file, named
shiro.ini contains the user(s) that are allowed to access the system together with their
passwords and roles.

To add or modify a user, it is enough to go to the [users] section of the file, and add or modify
the line with its username, password and role type information.

The user name can be either a name or an email address (See Figure 22).

Figure 22: Shiro.ini users section

[users]
admin@example.eu = admin, ROLE ADMIN

userl@example.eu = passwordl, ROLE ADMIN

To use the HTTPS protocol update the /1ogin property in the section [urls] as follows:
/login = ssl[8443],authc

If the SSL configuration is chosen, make sure Tomcat is properly configured to support HTTPS.

45

Re3gistry Software documentation
Using the Re3gistry

4. Using the Re3gistry

4.1. Accessing the Re3gistry administration panel

Once the user has completed the installation steps covered in section 3, he just needs to start the
Tomcat Web Application Container and access the Re3gistry through any web browser.

There are different ways of starting Tomcat, depending on the installation, on the O.S. and other
configurations. Usually the tomcat can be easily started using the ‘startup’ (Windows users:
startup.bat, Linux users: startup.sh) script available in the Tomcat’s ‘bin’
(<tomcat installation folder>/apache-tomcat.8.x.xx/bin/).

The URL to access the instance usually, if not configured diversely, should follow this pattern:

http://localhost: [tomcat port]/[Name Of Webapp]

By default, Tomcat works on port 8080, so in common installations, and if the webapp name has
been maintained as ‘Re3gistry-1.X" (folder name appearing within the TOMCAT webapps folder),
typing http://localhost:8080/Re3gistry-1.X should redirect to the authentication page.

Accessing the Re3gistry’s URL should take you to a web page asking for authentication details (See
Figure 23).

m Re3gistry

Enhancing access to European spatial data

Figure 23: Authentication page to access the Re3gistry software administration panel
Entering the user authentication details previously set in the shiro.ini file should give the user
access to the Re3gistry Data management system page (See Figure 24)

46

http://localhost:8080/Re3gistry

Re3gistry Software documentation
Using the Re3gistry

uk | Contact | Lagal notice | Lageut Engishien) v

m Re3gistry

Enhancing access to European spatial data

Data management system

The Re3gistry software is a tool used to manage the data contained in a registry.

& Add data file

Items per page

¢ User 0 Comment ¢ Status - Start date 8 End date & Actions
No data was found

0to0of0

Re3gistry v1.2

Figure 24: Data management system page

4.2. Importing data

To start the import procedure, click on the Add data file’ button, a pop window will appear to
guide you in the data file importing” phase (See Figure 25).

Add data file []

Select the data file:

o Load darta file
Example data files: [¥|File model [¥ Example data

Insert a label to identify this procedure:

Select the procedure options:

Ignore warnings (3

Start procedure

Figure 25: ‘Add data file” window

Pressing the Toad data file’ option, will let you browse your computer” directories to pick the
target data folder.

47

Re3gistry Software documentation
Using the Re3gistry

Next, it is recommendable to write a brief comment describing the data that is on the point of
being imported, that will allow you easily identify the procedure launched in the case you run
others, and finally press ‘start procedure’.

Optionally, you can check the “ignore warning’boxin case you do not want the system to check
the correctness of the source data structure before inserting it in the database. If instead, you
prefer to validate the correctness of your data leave the field unchecked.

Refer to the section 2.2.3.2 on Data analyser to know the differences between errors and
warnings.

The data files to be loaded must be compressed in.zip format.

If you want to load an example file, go to the downloaded software package inside the data folder
relative to your chosen example.

Path: <root_folder>/Project_package 1.X/examples/<inspire-example [neutral-example>/data

Rememober, if in the Database creation step you chose ‘neutral- example’, you should be taking
the file NeutralExampleVl.X. zip. If you want to change of example, you must clean the database
content and load its proper script (See section 3.4.2).

After starting the procedure, a new row will appear in in the data management system’s table with
the relative details to the launched procedure (See Figure 26).

Data management system

The Re3gistry software is a tool used to manage the data contained in a registry.

@ Add dara file

Items per page KN Fitter I
Wser ¢ Comment ¢ Status v Start date ¢ End date Actions
admin Testing example), Checking data m 2016-07-08 11:29:57 2016-07-08 11:29:57 -

Showing 1 to 1 of 1 entries | |

Figure 26: Procedure details in the data management system panel
The status column in the table will change accordingly to the task being performed

This table contains the history of the procedures launched, together with the current running
procedure and eventual queued procedure. Once the procedure starts, the systems performs all
the data operations (import and export). See section O

48

Re3gistry Software documentation
Using the Re3gistry

Re3gistry administration panel, to know the meaning of the possible status values.

Only one procedure can run per time. If the user adds a new data file while another procedure is
running, the newly added data file will be queued. The system will run the queued files once the
current running procedure has ended.

Once the procedure has started, the browser can be closed: the system will continue to run.

An email notification will be sent once the procedure ends; if it ends with problems, the list of
problems will be attached to the email.

The procedure may take a considerable amount of time, depending on the number of items to be
processed.

When finished, if no error has been encountered, the value of the ‘Status’ column should now
state Imported’ and the option Run Data Export’ inthe last column (Action’ column) must
be available.

4.3. Exporting and converting data files

In case you want to run again the staticization process, you can use the Run Data Export’
function. It will start exporting the information stored in the database in the requested formats
(See Re3gistryData.properties) without the need to re-import it. When the status column value
passes from Writing files to ‘Completed,”it means that the static files have been properly
produced.

Note: Remember that the conversion across formats relies on XSLT files. If the user would like
additional formats, he will need to provide the needed transformations rules.

To check the output files, go to the path defined in the property
‘staticizer.custom.folder.path="0f the Re3gistryStaticizer.properties in section 3.5.2).
Normally, if the name folder has not been altered, the files should be contained inside the custom
subfolder.

If you need the export of the whole data in the database, you can use the option ‘Run full export’

If you chose to export the neutral-example’, you should have obtained a folder with a file
structure as shown in Figure 27.

49

Re3gistry Software documentation
Using the Re3gistry

| company
| country
[| enxar
IQ{ registry.bg.json
(& registry.bg.xml
Qf. registry.cs.json
2 registry.csxml
[Q’f’ registry.da.json
2 registry.daxml
[reqgistry.de.json

Figure 27: Produced data in the ‘custom’ folder for the ‘neutral-example’
In general terms, the output files are organised in a way that every register has its own folder
(matching with the register name) with its belonging items enclosed in it. In the root of the custom
folder the registry description appears.

There could be multiple files related to a single item because of the different formats and
languages required. This can be identified [item name].[language].[format]

4.4. Deploying the contents

4.4.1.Moving data from the Re3gistry software to the server

To make the user live easier, there is a script in the

webapps/Re3gistry-1.X/WEB-INF/classes path

that helps the user managing files across system. Namely, it allows moving programmatically the
recently ‘exported” data to the webserver folders serving the contents coming from the ‘custom’
folder and using the indexed data too, coming from ‘solr’ folder.

To make it work properly, the user should open it and edit the file by defining the proper source
and target folders to be handled (See Figure 28).

:: Windows deploy script ::
xcopy "C:/Re3gistry-data/staticizeri\custom” "C:‘\\Program Files (x86)‘\Apache Software Foundation\‘Zpachel.2\\htdocs\\custom™ /e /i /u /v
®copy "C:/Re3gistry-data/staticizerh\sclrcustom™ "C:\\Program Files (x86)\\Apache Software Foundation\\RApache2.2\\htdocs\\solr™ /e /i /u /3{

woh e

Figure 28: Windows-deploy.bat contents

Note: To know more on how to configure the server continue reading the coming sections.

4.4.2.Creating a modification summary RSS feed

50

Re3gistry Software documentation
Using the Re3gistry

RSS feeds are useful to share the modifications occurred in the contents of the registry and keep
your audience informed of them.

The Re3gistry administration panel, has a ‘Deploy’ button that allows you to automatically create
or update (if already done) an RSS file through a Popup Window (See Figure 29).

Note: To perform this action you must modify the properties in the
Re3gistryDeployer.properties [Optional]fi/e.

Prepare the Deploy

Choose the available options and start the data deployment.
¥ Update the RSS

Include the changelog in the RSS

Insert a title for this RSS item
Registry modifications
Customize the RSS item related to this deploy:
B E & « -l = mIEME = Q|| | [Source

[- . 99 || Styles « || Mormal - ?

Registry modifications

Changelog|
Itemclass Item Action Comment
Country COuU0003 addition First import
Country COouUo003 addition First import
Country COuUo0os addition First import
body p A
Start deploy

Figure 29: Popup window allowing creating or updating an RSS file
To check the output file, go to the path defined in the property ‘deploy.rss.targetfolder="of
the Re3gistryDeployer.properties (See Re3gistryDeployer.properties).

51

Re3gistry Software documentation
Serving the Re3gistry contents

5. Serving the Re3gistry contents

5.1. System requirements

To install the webapp included in the Re3gistry, the following programs need to be previously
installed in the user’s computer.

= Apache HTTPD?O
= PHP 5.4 or higher'!
= Apache solr 4.8.0%?

Once the step 4.3 Exporting and converting data files has been performed, the content is ready
to be served and shared.

The way the content will be shared, is up to the user. Nevertheless, the Re3gistry package
includes a ready to use web application (webapp) that could help the user providing a friendly
user interface to interact with the data.

The Re3gistry, produces a set of files organised to set up a web service providing access to the
registers. An important characteristic of the service is the possibility to provide the same
information in multiple formats and multiple languages. The service is implemented using the
content-negotiation approach.

The content-negotiation means that the server can provide automatically the correct file
language/format based on the parameters set in the http header which is sent in the http
request.

If a user prefers to use the classic way to accessing a specific file (request a specific
format/language using a direct URL), the system supports this approach too.

The file to be used in order to set up a web service can be found in the staticiser output folder as
configured in the file named Re3gistryStaticizer.properties .

5.2. Web service

The files produced by the Re3gistry can be used to provide the web service in two ways:

= a RESTful web service which adopts a content-negotiation approach for serving the
resource or,

10 https://httpd.apache.org/download.cgi
11 http://php.net/downloads.php
12 http://www.apache.org/dyn/closer.lua/lucene/solr/6.1.0

52

https://httpd.apache.org/download.cgi
http://php.net/downloads.php
http://www.apache.org/dyn/closer.lua/lucene/solr/6.1.0

Re3gistry Software documentation
Serving the Re3gistry contents

= astandard web service, which uses the resource name in order to access the specific
resources.

5.2.1.RESTful web service
This web service is implemented using the Apache HTTPD web server and its content-negotiation
capabilities.

The resource is accessed using the standard RESTful notation. In Table 8 there are some examples
illustrating how to access different resources in Re3gistry webapp.

Table 8: RESTful URL example

http://base_uri/register_uriname Used to access a register, an
http://base_uri/register_uriname/item_uriname item or an item collection
http://base_uri/register_uriname/collection_uriname/item_uriname
http://inspire.ec.europa.eu/themes Used to access the INSPIRE
theme’s register
http://inspire.ec.europa.eu/applicationschema/ad Used to access a specific

application schema
http://inspire.ec.europa.eu/codelist/ActiveWellTypeValue/decontami Used to access a specific
nation/ value in the code list

To ask for a specific file format or language, the HTTP request should have the http header set. If
no header is set, the web service returns (by default) the xml format in English.

There are different ways of setting the HTTP header in the requests. If the request to a resource is
done through the browser, the HTTP header can be set using a specific plugin for that browser.
Look at Figure 30 to see how the parameters can be set.

Search for ‘HTTP header’ in the browser’s component store. If the request is done
programmatically, refer to the guide of the programming language used.

Figure 30: Example of content-negotiation parameters

Accept application/xml
Accept-Language en

Accept application/atom
Accept-Language fr

To enable the content-negotiation capabilities, the Apache HTTPD server has to be configured.

53

Re3gistry Software documentation
Serving the Re3gistry contents

Each content folder needs a configuration file that addresses the HTTPD server to serve the right
file. This file is a file with a .var extension (for example, cn.var), see Figure 31 to understand
how it looks like.

The staticiser module produces this file automatically.

Figure 31: .var file example

URI: ICDValue.en.atom
Content-language: en, en-GB, en-US, en-EN

Content-type: application/atom+xml

URI: ICDValue.en.html
Content-language: en,en-GB,en-US,en-AU,en-NZ; g=1.0
Content-type: text/html

URI: ICDValue.en.json
Content-language: en, en-GB, en-US, en-EN

Content-type: application/json

URI: ICDValue.en.xml
Content-language: en, en-GB, en-US, en-EN

Content-type: application/xml

For detailed information on how to configure Apache HTTPD and content-negotiation, refer to the
Apache HTTPD guide [APACHE-CN].

5.2.2.Standard web service

To access the resources without using the content negotiation approach, the common standard
URL-based request can be used.

Figure 32: Web service requests - Direct URL example

http://inspire.ec.europa.eu/codelist/codelist.en.html
http://inspire.ec.europa.eu/themes/themes.de.atom
http://inspire.ec.europa.eu/Applicationschema/ad.fr.json
http://inspire.ec.europa.eu/codelist/AgeBy5YearsValue/41039.it.xml

http://inspire.ec.europa.eu/codelist/Articlel7CountingUnitValue/reference/Ar
ticlel7CountingUnitValue.fr.rdf

5.3. Installing the Re3gistry webapp

54

Re3gistry Software documentation
Serving the Re3gistry contents

5.3.1.Copy the sample web application folder

Browse the Re3gistry software package and copy the webapp folder available at:

Path: <root_folder>/Project_package 1.X/webapp

Paste the copied contents into the folder storing the exported data, as shown in Figure 33.

Remember this path given to the ‘staticizer.custom. folder.path="0f the
Re3gistryStaticizer.properties configuration file

| company

/ country

| . webapp

cn.aar

| -

[;fr registry.bg.json

e .
=2 renistrehnaml

Figure 33: Paste the webapp folder into the exported data folder

5.3.2.Setting the web application

The webapp is built in php programing language, for this reason, your server should have installed
php v5.4 or higher.

The webapp folder shall be put in the same folder containing the files exported from the Re3gistry
during the exporting phase. See how in Figure 34.

To make the HTML webapp work, at least the JSON export of the data managed by the Re3gistry
is needed. An example file system structure is shown below.

Figure 34: Proposed structure to locate he webapp files and the data files

/var/www/your app/data/ -> This folder contains all of the files produced by
the Re3gistry software.

/var/www/your app/data/webapp -> This folder contains the webapp.

5.3.3.Configuration

To webapp needs as well a couple of files to be modified and included in the webapp folder. Those
are:

= conf.php
= Jogger.xml

55

Re3gistry Software documentation
Serving the Re3gistry contents

5.3.3.1. conf.php

Path :/webapp/app data/

This file manages the basic configuration of the web application: from the web application URL
itself, to the languages available, to the number of items to be showed per page.

With the help of a notepad++ program, open the file to update the properties according to your
needs and save them as shown in Figure 36.

The important properties to be configured are listed and explained in Figure 35 :

Figure 35: Properties in the conf.php file

define ("APPLICATION ROOT','/var/www/INSPIRERGD/data/webapp/'); // This is
the path of the root folder of the webapp.

define ("APPLICATION ROOT URL', 'http://inspire.ec.europa.eu/registry/"'); //
This is the root URL of the rgistry webapp.

define ('CDN _URL', 'http://inspire.ec.europa.eu/cdn/latest/"); // This is the
URL of the CDN containing all of the style and script for the website.
Currently we provide the INSPIRE CND as an example included in the package.
You can start from that to customize your User Interface.

The other important properties are located at the end of the config.php file
after the line "/*** Service configs ***/". Here you have to basically
change the URL of each properties according to your needs. For example, if
your URL starts with http://www.example.com, you have to replace all of

the http://isnpire.ec.europa.eu strings with http://www.example.com. The
reason to have one properties for each element is that in some advanced
installation, there can be different URL for each of the think in the
system.

Detailed information in form of comments will help the user configuring the webapp to his
environment.

f**** hpplication configuration file #****/

4 /* Ipplication main gonfigs */

/* Webapp paths */

9 /* Webapp URLa *
10 define ('EE BL", "http://localhost/registry/"); f/ The root URL of the registry service. (Example:
http://localhost
11 define('AFFLIC

it (]l nnalhoet faakhare O

localhost/webapp/'):; // The root URL of the application. (Example:

Figure 36: conf.php file opened in Notepad++

5.3.3.2. logger.xml

Path : /webapp/app data/

56

http://inspire.ec.europa.eu/registry/');
http://inspire.ec.europa.eu/cdn/latest/');
http://www.example.com/
http://isnpire.ec.europa.eu/
http://www.example.com/

Re3gistry Software documentation
Serving the Re3gistry contents

7’

This file contains the settings of the logging system. The property to define is called * LoGpaTH "
This text will be replaced with the path to the folder where the logs of the web application will
be saved (See Figure 37).

You can use the 1og folder used formerly in step 3.5.2.3 logcfg.xml, or just create a new folder to
better distinguish the logs files.

<?xuml version="1.0" encoding="UTF-8"32>
§<ccn:‘iguraticn xmlns="http://logging.apache.orqg/logdphp/">

<appender name="default" class="LoggerippenderRollingFile">
<layout class="LoggerLayoutPattern">

MM W R

<param name="conversionPattern" value="#date [%pigd] %server{HTTP_HOST}#server{REDIRECT URL} - %-5level - smsgen" />

& - </layout>
7 {parani name="file" value="C:/¥ampp/tomcat/logs/WebappLogs/application.log" ¥=

<param name="maxFileSize" wvalus="10MB" />
g <param name="maxBackupIndex" wvalue="10" />
0 - </appender>
1 = <rooty
2 <appender ref ref="default" />
3 - </root>

~</configuration>

Figure 37: Property in the logger.xml configuration file where the log file is defined

5.3.4.Configuring the HTTP server

Path: <root_folder>/Project_package 1.X/webapp/examples/<inspire-example [neutral-
example>/apache-configurations/service-configuration.conf

The HTTP configuration files included in the examples have been tested with Apache HTTPD 2.4
server.

Consider that Apache may be installed and configured in multiple ways. Here we cover only an
example on how to do it. For more information on how to add additional configuration files to
Apache HTTPD server, refer to [APACHE-CONFIG-FILES].

Copy the file and paste it into the apache configuration folder (it depends on the O.S.).

If you are using Windows, it is likely that your Apache installation file system includes a subfolder
named extra within the conf folder. If this is your case, paste the service-configuration.conf
in the extra folder and mention its presence inside the httpd.conf file (available in the conf
folder). To do so, open the file httpd.conf and include at the end of the document, the following
lines as shown in Figure 38.

Figure 38: httpd.conf file configuration

Registry configuration

Include ‘conf/extra/service-configuration.conf’

Arrived at this point, open the service-configuration.conf file to edit and save the required
modifications. The settings to edit are located in the beginning of the file, see Figure 39.

57

Re3gistry Software documentation
Serving the Re3gistry contents

Figure 39: Settings to configure the HTTP server

Alias /data / [root-path] /output/custom

DocumentRoot [root-path] /output/custom

#<Directory " [root-path]/output/custom">
AllowOverride none
Require all granted

#</Directory>

The user should replace twice the value “/ [root-path] /output/custom’ by the path where the
exported data is stored.

(Remember this path is the given to the ‘staticizer.custom.folder.path="of the
Re3gistryStaticizer.properties configuration file).

Regarding the commented lines (beginning with #), check if you need to uncomment it to make it
work.

Note: Remember to restart the web server every time you perform a modification, in order Apache
to load the new configuration file(s).

5.3.5.Set up the service-specific configuration

The Re3gistry package includes a generic user interface through which the contents are displayed.
The files handling those are included in the webapp-configurations folder.

Path: <root_folder>/Project_package 1.X/webapp/examples/<inspire-example [neutral-
example>/webapp-configurations

This generic interface is suitable and ready to use for both the available examples: inspire-

example and neutral-example.

To make use of the generic user interface, copy the webapp-configurations 5 subfolders
available in the Re3gistry package and paste them into the ‘app data’ folder present into the
output data folder where the exported data is stored. The app_data folder should appear as in
Figure 40.

58

Re3gistry Software documentation
Serving the Re3gistry contents

| custompages

| localization

| modes

| parts

| staticpages
Qf’ conf.php

2 logger.xml

Figure 40: app_data folder structure after editing
The layout and the contents belonging to the web application are fully customisable. For more
information on the customisation of the web service see section: Customising the Re3gistry.

5.4. Managing solr

5.4.1.Installing solr

After downloading the Apache solr 4.8.0 version®? (available in the archived versions), go to the
dist folder of the package and copy the solr-4.8.0.war file to paste inside Tomcat’s webapp
folder.

You also need to copy the libraries contained in solr-4.8.0/dist/solrj-1ib and paste them
inside Tomcat’s 1ib folder.

Again in the solr package, copy the folder ‘so1r’ available under the example folder and copy it
as well in tomcat’s webapp folder renaming it ‘solr-home’ .

5.4.2.Configuring solr

5.4.2.1. solr.xml

Browse tomcat’s configuration files following this path: tomcat/conf/Catalina/localhost and
once there, create a file called solr.xml.

The name of the file must match with the name of the solr instance places in the tomcat’s webapp,
folder if you didn’t change solr.xml should work properly

Open the file and add the lines indicated in Figure 41, by changing appropriately the paths to both
your solr.war file and its data repository ‘solr-home” (normally already available in tomcat’s
webapp folder).

13 https://archive.apache.org/dist/lucene/solr/4.8.0/

59

https://archive.apache.org/dist/lucene/solr/4.8.0/

Re3gistry Software documentation
Serving the Re3gistry contents

Figure 41: Configuration of the solr.xml file

<?xml version="1.0" encoding="utf-8"?>

<Context docBase="C:/xampp/tomcat/webapps/solr.war" debug="0"
crossContext="true">

<Environment name="solr/home" type="java.lang.String"
value="C:/xampp/tomcat/webapps/solr-home" override="true"/>

</Context>

5.4.3.core.properties of solr registry collection

Within the solr-home recently renamed folder, you must find a subfolder named ‘collectionl’,
copy it and rename it, for example ‘registry’ (See Figure 42) .

J bin
J collection
. registry

|| README et

p
= solrxml

|| zoo.cfg

Figure 42: New ‘registry’ collection for solr
Inside registry folder, there must be a file named ‘core.properties’, open the file and edit the

value for the name so that it matches with the name given to the folder, in our example:
name=registry.

5.43.1.1. Schema.xml

Finally, you need to place the schema . xm1 file under the conf folder of the solr registry collection.
The xml file comes within the Re3gistry package under its the example folder. Go to your
respective chosen example and take the schema . xm1 file available within the folder called ‘so1r”.

Restart Tomcat to apply the changed and check that solr is working. The solr administration panel
(See Figure 41) should be accessible by follow this URL pattern:

http://localhost: [tomcat port]/[Name Of Webapp]

60

Re3gistry Software documentation
Serving the Re3gistry contents

Apache L nstance = System (0]

Solr

@ Dashboard (& Versions

<
) l\e

@ start about an hour ago Physical Memary

(23 Logging solrspec 480

S Core Admin solr-impl 4.8.0 1589874 - thetaphi - 2014-04-24 20:54:58

% lucene-spec 480

Swap Space

{3l Java Properties
lucene-impl 4.3.0 1589874 - thetaphi - 2014-04-24 20:38:58
= Thread Dump

elector v
M # JVM-Memory
[Runtime Oracle Corporation Java HotSpot(TM) 64-Bit Server VM (1.8.0_74 25.74-b02)
[Processors 12 I
ir e

& Args 125.95 MB

Ii.ClassLoaderLogManager

[£] Documentation # Issue Tracker & IRC Channel [Community forum [o] Solr Query Syntax

Figure 43: solr administration panel

5.5. Connecting solr to the Re3gistry webapp

Once your solr instance is properly installed and running, you will be able to define the solr
endpoint in the conf.php file (already manipulated in former steps when setting up the web
application), to enable both the search and the autocomplete functionalities (Find an example in
Figure 44). The solr endpoint normally follows this pattern:

http://[IP_of your
machine]: [tomcat port]/[solr instance Name]/[name solr collection]/select

/* Searching system gonfigs */

define ('5SELARCH AUTOCOMPLETE URL', 'http://localhost:8081/3clr/reqistry/select™): /
define ('SEARCH CORE_URL', "http://localhost:8081/solr/reqistry/aelect’); // The Ap
/f The searching system needs an instance of Apache Solr

Figure 44: Example of definition of solr endpoint in the conf.php

5.6. Indexing your registry contents
To provide a good user experience when searching in the web application, you need to index the
data of the registry as you modify it.

To execute the index procedure, you need to populate or update your solr service through its
‘update’ operation by using the post.jar library that will fetch the data in the indicated folder
to index it and make it available. See an example of how to execute it in the shell in Figure 48.

61

http://[ip_of/

Re3gistry Software documentation
Serving the Re3gistry contents

Figure 45: command to update the indexing of solr

java -Durl=http://localhost:8081/solr/registry/update -Dauto -Drecursive -
jar post.jar C:/xampp/tomcat/webapps/Re3gistry-
1.X/DataRepository/StaticisedData/solrcustom/

To check that the indexing has worked properly make a test query as for example:

http://localhost:8081/solr/registry/select?g=*

Alternatively, simply, go to the solr administration panel and check its results (making sure you
requesting the collection of data related to the registry contents) See Figure 46.

Request-Handler (qt)
7/

Iselect
Apache ’4‘ {
Solr 7 common
a
@ Dashboard
(& Logging
& Core Admin fq
7| Java Properties e
= Thread Dump sore
registry ~| | start, rows
@
f
4
£l df
™) Raw Query Paramaters
= keyl=vallakey2=valz
E wt
json
£ Query =
®indent
- O debugQuery
u - some Company items which are linked to the Country Tegister.”,
O dismax
[edismax
hi
facet
O spatial
O spelicheck
Execute Query. th Count

[Documentation 4 Issue Tracker g IRC Channel [Community forum Solr Query Syntax

Figure 46: Querying indexed contents within the solr administration panel,

To call the post. jar function, remember to locate the shell in the proper solr package folder,
where the library is available (normally at the path solr-
4.8.0/example/exampledocs/post.jar) or to specify explicitly the location of the library.

5.7. Testing the web service

To check that everything is working properly, try the URL you defined in the configuration file
conf.php wWhen setting up the web application (Check previous steps).

/* Webapp URLs */

define ('REGISTRY BASE URL', 'http://localhost/registry/"'); // The root
URL of the registry service. (Example: http://localhost/registry/)

62

Re3gistry Software documentation
Serving the Re3gistry contents

By default, if you have not changed the value, it should be answering to the URL
http://localhost/registry/. If that is the case, you should get a website similar to the one shown in
Figure 47.

In the image of the following Figure, only XML and JSON formats are available, as set by the user
according to its preferences in the former steps (See configuration of
Re3gistryStaticizer.poperties). Also note that the example is incomplete information on the
registry is still to be completed. These questions will be covered in the customisation section.

act | Legal natice English (en) M

LOGO YOUR

Registry

YOUR Registry Q
D: nttp:/flocalhost/registry

Label: YOUR Registry

Content Summary: Registry description TED.

Registry manager YOUR_REGISTRY_MANAGER

Other formats: XM 1SON

Registers

Label o

Company

& ¥

bsce| 50 |w| Showing 1102 of Z entries irst | Previous 1 Next Last

The INSPIRE Registry has been developed under Action 1.17 of the ISA Programme: A Reusable INSPIRE Reference Platform.

Powered by: Redgistry 1.2

T INSPIRE MHEWS & EVENTS INSPIRE Tools YOUR registry
| PROJECT THSPIRE Web Site — e —
i INSPIRE Legislation Events Validator Help
H LOGO INSPIRE Library Subscribe to INSPIRE news Metadata Editor
e INSPIRE Forum RSS News Registry
INSPIRE Thematic clusters Data Specification toolkit
bout | Cantact | Legai natic - BE

Figure 47: Re3gistry generic user interface serving the ‘neutral-example’ registers contents
To finish, check that the indexing function works properly, to do that try to search something you
know it should have been indexed, as for example the names of the available registers provided
with the examples. Normally only by typing it should get some suggestions (See Figure 48).

| cd Q

company
country

Figure 48: Autocomplete function

63

http://localhost/registry

Re3gistry Software documentation
Serving the Re3gistry contents

5.8. INSPIRE register federation descriptors files- RoR
descriptors

The Re3gistry provides also descriptor files for the registry and its registers called RoR descriptor
files, because of the ‘Registry of registers’.

This files allows the user adding those registers that he considers important, normally because
they are extending INSPIRE into the INSPIRE register federation service'?,

The descriptor file is considered by the Re3gistry as an additional type of format with the
difference that it is only provided in English, hence, the file does not need the language identifier.

The descriptor file contains the list of all the registers available in the registry system. To see the
contents of the file, you should be able to obtain it by typing the URL following the pattern shown
in Figure 50.

Figure 49: Generic URL to get the ROR file in the re3gistry

http://registry.example/registry/registry.ror

14 http://inspire-regadmin.jrc.ec.europa.eu/ror/

64

http://inspire-regadmin.jrc.ec.europa.eu/ror/

Re3gistry Software documentation
Customising the Re3gistry

6. Customising the Re3gistry

The following section will help you creating your own registry and registers.

To do so, we will reuse one of the example neutral-example provided with the software
package to adapt them as needed. It consists of a registry that contains two registers ‘Country”
and ‘companies’, being ‘Country’ a hierarchical register and ‘Companies”’ a plain one.

The neutral-example example is available in the package software and located at:

<root folder>/Project package 1.X/examples/neutral-example

To create a new customised project, we suggest you to begin by copying the folder of the example
named neutral-example and to rename as you like. In this guide, in order to refer to the paths
of the files, we will rename the folder to ‘customised-example’.

6.1. Customising the Re3gistry contents

6.1.1.Creating a costumised registry

Most of the settings for the registry and its contents are contained in the database-
initialization.sqgl SQL file. The content of this file relies very closely on the create-
tables.sqgl file that produces the database structure (tables, columns etc.) and hence, it should
have already been launched.

With a text editor, open the database-initialization.sql file and update the contents of the
file as explained in the following steps. The database-initialization.sql fileis located at:

<root folder>/Project package 1.X/examples/customised-
example/database/database-initialization.sql

6.1.1.1. Setting the registry parameters

The information related to the registry systemis located under the registry’ sectioninthe script
and it relates to the named ‘registry’ database table (See Figure 50).

uuid uriname baseuri registrymanager datecreation datelastupdate
[PK] character varying(300) |character varying(300)| character varying(200) | character varying(300) |timestamp without time zone |timestamp without time zone

Figure 50: Fields of registry table of the database
Look for the following line which is below the registry’ table section:

--registry

INSERT INTO registry VALUES ('l', 'registry', 'http://localhost', '4', '2016-
05-28 15:30:00', NULL) ;

65

Re3gistry Software documentation
Customising the Re3gistry

Some of the highlighted elements may need to be updated depending on your needs. In order of
appearance these elements are:

= The unique identifier (uuid) of the registry. This parameter needs to be changed if you
intend to work with two or more registries. If you are using a single registry, keep the
default value 1".

= The code (uriname) related to the registry. By default, it is set to registry’. Consider to
rename it as this code will be appended to the chosen base URI’ to compose the URIs of
the registry.

= The base URI of the registry

In this case, the resulting URL of the registry will be http://localhost/registry.

6.1.1.2. Defining the email address for the registry contact point

The elements appearing in this part of the SQL script contain the metadata for both the registry
and the registers. They relate to the ‘reference’ database table (See Figure 51).

vuid email reftype datecreation datelastupdate
[PK] character varyini| character vai character varying({300) timestamp without time zone |timestamp without time zone

Figure 51: Fields of reference table of the database
Look for the following line below the ‘reference’ table section:

INSERT INTO reference VALUES ('l', 'YOUR EMAILG@email-example.eu',
'contactpoint', '2014-10-14 00:00:00', NULL) ;

Update the highlighted parts of the line with the email address that you want your registry to have
as contact point.

6.1.1.3. Setting the supported languages

This part of the script handles the multilingualism of both the registry and the registers.

Every line of the Tanguage code’ section defines a new language. By default, the script contains
all the official European languages. See Figure 52 to see where the language is configured in the
script.

You can remove those that you do not need, or instead, add further languages depending on your
requirements.

Figure 52: Language configuration

--languagecode
INSERT INTO languagecode VALUES ('l', 'english', 'en', 'eng', TRUE);
INSERT INTO languagecode VALUES ('2', 'italiano', 'it', 'ita');

INSERT INTO languagecode VALUES ('3', 'czech', 'cs', 'cze');

66

Re3gistry Software documentation
Customising the Re3gistry

The highlighted parameters might need to be updates. In order of appearance these are:

= The unique identifier (uuid) of the language.

= The label of the language (the human readable label).

= The two-digit code of the language.

= The ISO 639 - 2 three-digit code of the language.

= The default system language (masterlanguage) for the registry system. Note that only a
single language can be set as the master language (TRUE).

Depending on your organisation needs, it could be more convenient for you to set the master
language to your official language, since registered items must be available at least for the

master language.

6.1.1.4. Setting the status values

The information available under the status section of the script, contain the values together with
the public URIs that will be used by the versioning system of the Re3gistry.

The codes (uriname) for the different status come from the [ISO 19135] ‘Procedures for item

registration’ standard.

We recommend to update solely the base URL, to align it with your registry URL as defined in the
step 6.1.1.1. (See Figure 56)

Figure 53: Definition of the register status

—-—-status

INSERT INTO status
'valid');

INSERT INTO status
'invalid') ;

INSERT INTO status
'submitted') ;

INSERT INTO status
'superseded’) ;

INSERT INTO status
'retired');

VALUES

VALUES

VALUES

VALUES

VALUES

'http://localhost/registry/status’',

'http://localhost/registry/status',

'http://localhost/registry/status',

'http://localhost/registry/status’',

'http://localhost/registry/status',

6.1.2.Creating costumised registers

6.1.2.1. Setting the register parameters

The following section of the script handles the creation of the registers that will be contained in

your registry.

67

Re3gistry Software documentation
Customising the Re3gistry

Look for the lines beginning by INSERT INTO register VALUES, present under the register’
section (See Figure 56).

Figure 54: Register section of the script

--register

INSERT INTO register VALUES ('l', 'http://localhost', 'country', '6', '5',
'3, '7', 1, '2', '1', '2016-03-25 14:14:05.33835', NULL) ;

INSERT INTO register VALUES ('2', 'http://localhost', 'company', '6', '5',
‘3,7, 1, "2, "1, '2016-03-25 14:16:22.677696"', NULL) ;

For each register that you plan to create, there must be as many INSERT INTO statements, as
registers will be hosted.

The table of the database where this information is stored is named ‘register’.

In the example file that we are using as template, you can see that there are two registers: ‘country’
and ‘company’.

The highlighted parameters in Figure 54, need to be updated according to your needs. In order of
appearance these elements are:

= The unique identifier (uuid) of the register.

= The base URL of the register. If there is more than a register in a common registry, the
value of the base URL needs to be shared.

* The code (uriname) related to the register. It can be considered as the machine readable
name of the register, consider to rename it with a proper and recognizable name as it will
be appended to the former ‘base URI’ to compose the URIs of the registry.

o The reference to the id of the registry assigned in the 6.1.1.1 step. If you want to

handle more than a registry, make sure you are referring to the correct registry
ID.

6.1.2.2. Defining the itemclass

This part of the SQL Script handles the itemclasses of your register. An itemclass is a key element
of the register where parent/child relationships can be defined. To know more on the ‘itemclass’,
please refer to the section 2.1.1.3, The itemclass component.

Look for the lines under the ‘temclass’ section as shown in Figure 55.

Figure 55: itemclass section of the script

-—-itemclass

INSERT INTO itemclass VALUES ('1', 'l', 'Country', 0, 1, NULL, '2016-03-26
11:24:45.727957"', NULL) ;

INSERT INTO itemclass VALUES ('2', 'l', 'Region', 1, 2, '1', '2016-03-26
11:24:56.096222"', NULL) ;

68

Re3gistry Software documentation
Customising the Re3gistry

INSERT INTO itemclass VALUES ('3', '2', 'Company', 0, 3, NULL, '2016-03-25
15:40:30.457694"', NULL) ;

The highlighted elements need to be updated according to your register contents. In order of
appearance these elements are:

= The unique identifier (uuid) of the itemclass.

= The reference to the register unique identifier it belongs to (register), assigned in
previous step.

= The itemclass code (uriname), consider to rename it with a proper and recognisable
name as it will be part of the public URI .

= The hierarchical order of the itemclass (order number). By default, it is set to 0. For
plain registers keep the default value, in case of a hierarchical register make sure the
children itemclass appear after the parent one and that their hierarchical order number
are higher than the parent one.

In the example, the hierarchical Country register contains information on Countries (Country
itemclass) and regions belonging to them (Region itemclass).

= The data procedure order number, that number will define when the data is going to
be processed (dataprocedure) for its load in the database. Those itemclass that have
lower numbers will be processed first.

= The reference to the identifier of the parent itemclass (parent)

Note that in the example, the country register has a parent-child relationship, where the country
itemclass contains the region itemclass. For that reason, country itemclass is considered the parent
of region itemclass and regarding the data procedure order, the country itemclass must be
processed before the region one.

6.1.3.Translating the content

The elements of the registers are subject to ‘localisation’, that is, they can be translated or
“localised’. These contents, are handled by the TLocalization’ table of database (See Figure 56).
This table contains the multilingual fields as label, definition, description and any custom attribute.

itemclass | language customattributevalue | label definition | description | uri
ch text

uuid item i g register el i datecreation datelastupdate regish ref
[PK] characte| character vai| character vai character vai character vai character varying(50) character varying(400] text text w i witl

Figure 56: Fields in the Localization table of the database
To run the example and populate the database with localised data we will make use of the script
named database-localization.sqgl available at:

<root folder>/Project package 1l.X/examples/customised-example/database/
database-localization.sqgl

69

Ty erence status
h character varying(50) | character varying(50) character va

Re3gistry Software documentation
Customising the Re3gistry

The master language’ needs to be always available, whereas the localisation for any other
language is optional.

If the system does not find the language, it will reuse the available value in the ‘master
language’to represent the item.

The script for the localisation will refer to every item, inserted by the initialisation script,
using their unique id.

The structure of the script is shown in Figure 57. Depending on the element to be localised, the
contents in square brackets shall be completed, See an example of its usage in Figure 58.

Figure 57: localisation settings

INSERT INTO localization VALUES (' localization unique id ', '[item unique
id]1',[itemclass unique id],' language code ','[register unique

id]','[custom attribute value unique

id 1',' label ',' definition ',' description ',' uri','2015-06-30
00:00:00"', date last update ,[registry unique id], [reference unique

id], '[status unique id]');

Figure 58: Example of localisation file for the English language

--reference information localization for language en

INSERT INTO localization VALUES('l',NULL,NULL,'l',NULL,NULL,' Registry
manager name',NULL,NULL,NULL, '2015-06-30 00:00:00',NULL,NULL, '4"',NULL) ;

INSERT INTO localization VALUES('2',NULL,NULL,'l',NULL,NULL, 'Your contact
point',NULL,NULL,NULL, '2015-06-30 00:00:00',NULL,NULL, '"1"',NULL) ;

INSERT INTO localization VALUES('3',NULL,NULL,'1l',6NULL,NULL, 'Legal notice
label',NULL,NULL, 'http://ec.europa.eu/geninfo/legal notices en.htm',6 '2015-
06-30 00:00:00',NULL,NULL, '2',NULL) ;

INSERT INTO localization VALUES('4',NULL,NULL,'1l',6NULL,NULL, 'INSPIRE
Maintenance and Implementation Group (MIG)',NULL,NULL,NULL,'2015-06-30
00:00:00',NULL,NULL, '"3',NULL) ;

INSERT INTO localization VALUES('5',NULL,NULL, 'l',NULL,NULL, 'Members of
INSPIRE Maintenance and Implementation Group (MIG)',NULL,NULL,NULL, '2015-06-
30 00:00:00',NULL,NULL, '7',NULL) ;

INSERT INTO localization VALUES('6',NULL,NULL,'1l',NULL,NULL, 'European
Commission, Joint Research Centre',NULL,NULL,NULL, '2015-06-30
00:00:00',NULL,NULL, '5',NULL) ;

INSERT INTO localization VALUES('7',NULL,NULL,'1l',6NULL,NULL, 'European
Union',NULL,NULL,NULL, '2015-06-30 00:00:00',NULL,NULL, "6"',NULL) ;

-- localization for the registry information (language en)

INSERT INTO localization VALUES('8',NULL,NULL,'l',NULL,NULL, 'TEST registry',
'This is the description of the registry',NULL,NULL, '2015-06-30
00:00:00',NULL, '"1"',NULL, NULL) ;

--register localization for language en

70

http://ec.europa.eu/geninfo/legal_notices_en.htm','2015-06-30
http://ec.europa.eu/geninfo/legal_notices_en.htm','2015-06-30

Re3gistry Software documentation
Customising the Re3gistry

INSERT INTO localization VALUES('9',NULL,NULL,'l','l',6NULL, 'INSPIRE simple
register', 'This is a test.',6 NULL,NULL, '2015-06-30
00:00:00',NULL,NULL, NULL, NULL) ;

INSERT INTO localization VALUES('10',NULL,NULL,'1l','2',KNULL, 'INSPIRE
hierarchical register', 'This is a test.',6 NULL,NULL, '2015-06-30
00:00:00',NULL, NULL, NULL, NULL) ;

--itemclass localization for language en

INSERT INTO localization
VALUES('11',NULL,'2','1',NULL,NULL, 'Simple',NULL, NULL, NULL, '2015-06-30
00:00:00"',NULL, NULL, NULL, NULL) ;

INSERT INTO localization
VALUES ('12',NULL,'3','1l',NULL,NULL, 'Hierarchical',NULL,NULL,NULL, '2015-06-30
00:00:00',NULL, NULL, NULL, NULL) ;

INSERT INTO localization VALUES('13',NULL,'4','1l',6NULL,NULL, 'Hierarchical
level 1',NULL,NULL,NULL, '2015-06-30 00:00:00',NULL, NULL, NULL, NULL) ;

--status localization for language en

INSERT INTO localization
VALUES ('14',NULL,NULL, '1',NULL,NULL, 'Valid', NULL, NULL, NULL, '2015-06-30
00:00:00',NULL,NULL,NULL, '"1") ;

INSERT INTO localization
VALUES ('15',NULL,NULL, '1',NULL,NULL, 'Invalid', NULL, NULL,NULL, '2015-06-30
00:00:00',NULL, NULL,NULL, '2") ;

INSERT INTO localization
VALUES ('16',NULL,NULL, '1',NULL,NULL, 'Submitted', NULL, NULL, NULL, '2015-06-30
00:00:00',NULL, NULL, NULL, '3') ;

INSERT INTO localization
VALUES ('17',NULL,NULL, '1',NULL,NULL, 'Superseded',NULL,NULL,NULL, '2015-06-30
00:00:00',NULL,NULL,NULL, '4") ;

INSERT INTO localization
VALUES ('18',NULL,NULL, '1',NULL, NULL, 'Retired',NULL, NULL, NULL, '2015-06-30
00:00:00"',NULL, NULL,NULL, '5") ;

6.1.4.Import data file

This part of the guide helps you creating you own import data file. We recommend you to
take some of the existing examples coming in the software package and adapt it as needed

If you prefer to use a software that organises your data into rows and columns, that is
spreadsheets, instead of dealing with basic notepad programs, we recommend you the use of the
open source Open Office Cal ¢ with the appropriate settings to work with the Re3gistry as
shown in Figure 59

15 https://www.openoffice.org/

71

https://www.openoffice.org/

Re3gistry Software documentation
Customising the Re3gistry

—}

S Text Import - [addition.csv]

Import oK
Character set |Unicode (UTF-8) v o< |
Language |Default - English (UK) v
From row

Separator options
() Fixed width
(®) Separated by

[]Tab

[] Semicelen

[Comma
[]Space

] Merge delimiters

QOther

Text delimiter

Other options
[] Quoted field as text

[] Detect special numbers

Fields

Column type

' |standard [Standard Standard

Standard

Standard

Standard A

1 Localld ParentLocalld CollectionLocalId

Label

Language

Definitic

Figure 59: Settings in Open Office Calc to open appropriately he Re3gistry import actions files.

By using a spreadsheet manager you should get something as in Figure 60, otherwise, if you prefer
to use a notepad program it will look like more to Figure 61.

B = D E F G H |
1 |Localld ParentLocalld CollectionLocalld |Language Label Definition Description Status Comment
2 it en item test test definition test description walid |First import
3 it it elemento test definizione test descrizione test walid prima import

Figure 60: Re3gistry import action files in a spreadsheet (Open Office Calc)

72

Re3gistry Software documentation
Customising the Re3gistry

1 Localld|ParentLocalld|Collectionlocalld|Language |Label |IDefinition|Description| Status | Comment
2 itll|lenlitem test|test definition|test description|valid|First import

3 itllllitlglemente testlidefinizione testidescrizione testivalidlprimg imporg

Figure 61: Re3gistry import action files in a notepad program (Notepad++)

= Start by opening the example data file contained in the software package
'<root_folder>/Project_package_l.X/examples/neutral—example/data’.

= Rename the file for example to ‘CustomisedExample.zip’ and unzip the file. The folder
and files contained were created for the ‘neutral-example’, sample files used during
the installation guide in section 3.

= Take alook at the structure of the folders and the files. The data file structure, shall contain
one folder per itemclass available in the system, and per each itemclass there must be
several CSV files matching the available actions.

However, if the only action to perform is an addition, the only file that needs to be present in the
folder is the addition.csv file. For more information on the different action supported by the
Re3gistry software, refer to section 2.2.3.1.3.

= To create the data file for the ‘customisedExample’ create the three subfolders needed
for this example and name them as you wish, for the guide purpose, we will rename as
following:
o ‘simple’, it will contain a plain register based on the ‘company” example register.
o ‘hierarchical’, it will contain the first level of a hierarchical register based on the
‘Country’ example register.
o ‘hierarchicallevell’, it will contain the second level of the linked to the former
hierarchical register, based on the ‘Region” example register.

The name of the folders must match exactly with the itemclass names defined in the database
though the database creation scripts, see section 3.4.

6.1.4.1. Simple register

The file addition.csv, will add a custom attribute called ExampleCustomAttribute. This
customised attribute will not be multivalued, coded or foreign key. For more information on the
customised attributes, please refer to section 2.1.2.

<root folder> /customised-example/data/Simple/addition.csv

The example shown in Figure 62, will insert, through an addition action an item with the identifier
(id) “4t1”in English and Italian in a simple type register.

Figure 62: Example of an addition file with an additional customised attribute in a simple register

LocalId|ParentLocalId|CollectionLocallId|Language|Label|Definition|Descriptio
n|Status|Comment | *ExampleCustomAttribute[t, f, £, f]

73

Re3gistry Software documentation

Customising the Re3gistry
itl|||en|item test|test definition|test description|valid|First
import|example custom attribute content
itl||lit|elemento test|definizione test|descrizione test|valid|primo
import|esempio di contenuto per custom attribute

6.1.4.2. Hierarchical register
6.1.4.2.1. Hierarchical register — first level

The example in Figure 63, will insert three items with the id 'h1’, ‘h2” and ‘h3” in a hierarchical
register in English with no customised attributes.

<root folder> /customised-example/data/Hierarchical/addition.csv

Figure 63: Example of addition in hierarchical register using the addition.csv of its itemclass

LocalId|ParentLocalId|CollectionLocalld|Language|Label|Definition|Descriptio
n|Status|Comment

hl|||en|item test 1|test definition|test description|valid|First import
h2|||en|item test 2|test definition|test description|valid|First import
h3|||len|item test 3|test definition|test description|valid|First import

The example shown in Figure 64, will invalidate the element with the id h3 and will set the element
h2 as successor of the invalidated item.

<root folder> /customised-example/data/Hierarchical/invalidation.csv

Figure 64: Example of invalidation of an item

LocalId|CollectionLocalId|SuccessorLocallId]|SuccessorCollectionLocallId]|Commen
t

h3 | |h2] |

6.1.4.2.2. Hierarchical register —second level

The example in Figure 65, will insert an item with the id ‘h11” and another with the id ‘h12”in the
hierarchical register created in the former section 6.1.4.2, in English with no custom attribute.

This file is related to an itemclass that has a parent (the parent is the ‘Hierarchical’ itemclass
used in the former section); that is why the field collectionLocalId s filled with an element
from the ‘Hierarchical’ itemclass.

The n1z item has also a parent/child relation. In fact, it has the item h11 as parent.

This parent/child relation is different from the collection hierarchy relation. Indeed, the collection
hierarchy relation establishes a relation between elements belonging from different

itemclasses (like the ‘Hierarchical”’ and ‘HierarchicalLevell’ itemclass). The parent/child
relation establishes a relation between elements belonging from the same itemclass.

74

Re3gistry Software documentation
Customising the Re3gistry

<root folder> /customised-example/data/HierarchicallLevell/addition.csv

Figure 65: Creation of the second level of a hierarchical register

LocalId|ParentlLocalId|CollectionLocallId|Language|Label|Definition|Descriptio
n|Status|Comment

hll||hl|en|item test 1l|test definition|test description|valid|First import

hl12|hll|h2|en|item test 2|test definition|test description|valid|First
import

6.1.5.Transformation files

For each new register added to the system, a related XSLT transformation files shall be created in
order to get the right export files.

An example of XSLT files can be found in the ‘customised example’ folder (duplicated from the
‘neutral-example’) folder: /example/xs1

There is an XSLT file for each register and for each itemclass available in the system. Below in
Figure 72, there is a list with the location of the files needed to produce the HTML format
supporting the simple and hierarchical register explained in the sections above.

Figure 66: XSLT files needed to support the conversion in HTML formats for the simple and hierarchical
registers

<root folder> /customised-example/xsl/html/simple register.html.xsl

<root folder> /customised-example/xsl/html/Simple.html.xsl

<root folder> /customised-example/xsl/html/hierarchical register.html.xsl
<root folder> /customised-example/xsl/html/Hierarchical.html.xsl

<root folder> /customised-example/xsl/html/HierarchicallLevell.html.xsl

6.1.6.Deployer configuration

The deployer module is responsible for deploying all the static files produced by the staticisation
system to the target production server. This is needed if the production server is in a different
machine (or the files in the same machine need to be moved to another place in the same system).

This step is optional, in fact, the files produced by the Re3gistry can also be moved by hand to the
target path.

The module automatically takes all the static files produced and move them to the configured
target place.

The system uses a configurable script to launch the deployment process. This script can be found
in the main application properties folder under

75

Re3gistry Software documentation
Customising the Re3gistry

<root folder>/Project package 1.X/binaries/Re3gistry-1.X/WEB-
INF/classes/scripts/Re3gistryDeployer.

The system automatically recognises the operative system (Linux or Windows) and launch the
relative file (1inux-deploy.sh or windows-deploy.bat). This shell script can be configured and
customized to perform the needed operation in order to move the produced files to another
directory as well as to another server.

To configure the Deployer module, the properties to be customized are contained in the file

<root folder>/Project package 1.X/binaries/Re3gistry-1.X/WEB-
INF/classes/configurations/module/RegistryDeployer.properties

The properties are described below.

* deploy.script.folder: this property represents the folder where the .sh of .bat file are
stored.

" deploy.rss.file: this property is the location of the base RSS file. It is the master file
that keeps all the RSS news. If the ‘RSS update’ option has been selected, the RSS update
system takes this file and updates it with the new information. Then the file is copied to
the target path.

" deploy.rss.targetfolder: the folder in which the RSS file is stored after the update
(usually it is the same folder that contains all the files produced by the staticizer).

®" deploy.rss.baseuri: this is the base URI of the RSS file, stored in the FSS file as the
channel's Tink’ element (example: for the inspire registry, it
is http://inspire.ec.europa.eu/registry/rss/)

6.2. Customising the Re3gistry web interface

The Re3gistry web application (webapp) is a component that allows you to publish the data
exported by the Re3gistry software through a web interface, exposing also all of the formats
produced (e.g. XML, JSON, RDF, ...).

The webapp is available at

<root folder>/Project package 1.X/webapp’

To set up the basic configuration of the web application, follow the guide available at section O.

The following paragraphs will guide you understanding how the system works and how to set up
your own service. All the files to be customised are available at folder

<root folder>/Project package 1.X/examples/<selected-example>/webapp-
configurations

In case this section is read after the

76

http://inspire.ec.europa.eu/registry/rss/

77

Re3gistry Software documentation
Customising the Re3gistry

Re3gistry Software documentation
Customising the Re3gistry

Serving the Re3gistry contents at section 5, the user should have created the ‘custom-example’
folder by duplicating the neutral-example’ folder. In this case all the files are already in the
‘webapp-configurations’folder, and they have only to be updated.

6.2.1.Webapp structure

The web application reads the data from the JSON files exported by the Re3gistry software and
shows them in the web interface.

The web pages are provided in different languages; the user interface is localised using the json-
based localisations files contained in the folder

<root folder>/Project package 1l.X/examples/<selected-exampe>/webapp-
configurations/app data/localization

To change the default labels in the desired language, edit the <xx>.json file (<xx> represents the
2-digit language code).

The following paragraphs will explain in details how to customise the web application.

6.2.2.Modes

A registry is made of different components: register and register items that are differently
described and hence differently represented as far as the layout is concerned.

For this reason, the Re3gistry webapp provides by default four ‘layout modes”:

= Mode 1: Registry page

= Mode 2: Register page

= Mode 3: Detail page

= Mode 4: Detail page for the hierarchical register (like the INSPIRE code list register).

For each of the different elements available in the registry (e.g. Registry page, Registers page,
Items page), there are different representations, that is different fields to be visible in the web

pages.

To better explain this concept, we recommend you to take a look at the INSPIRE registry, an
instance of the Re3gistry, more specifically at the different fields available in one of the INSPIRE
theme web page [INSP-THEME-AD] see Error! Reference source not found. and in the INSPIRE code
list register web page [INSP-CODELIST-AccessRestrictionValue], see Figure 68.

79

Re3gistry Software documentation
Customising the Re3gistry

Abeut | Contact | Privacy Policy | Legal netice English (en) -

T INSPIRE

European
Commission Registry

European Commission > INSPIRE > INSPIRE registry > INSPIRE theme register > Addresses

Addresses Search Q

& Help us improving the Re3gistry software! Please fill our quick survey at http://europa.eu/!Bn84Ct (§

ID: http://inspire.ec.europa.eu/theme/ad

http://inspire.ec.europa.eu/theme/ad:1

Latest version: http://inspire.ec.europa.eu/theme/ad

Label: Addresses

Definition: Location of properties based on address identifiers, usually by road name, house number, postal code.
Description: An address is an identification of the fixed location of a property. The full address is a hierarchy consisting of

components such as geographic names, with an increasing level of detail, e.g.: town, then street name, then house
number or name. It may also include a post code or other postal descriptors. The address may include a path of access
but this depends on the function of the address.

Addresses serve several purposes, these include the four uses described in the Dutch Address Registration catalogue:
(i) lecation (e.g. for visits or the delivery of mail),

(i) identification (e.g. in context of a building registration),

(iii) jurisdiction (e.g. authority responsible for the property identified by the address),

(iv) sorting and ordering (VROM 2006). There may be other uses identified in the INSPIRE user requirements survey,
for example, to aid emergency response.

A number of different object types can be related to property. The most commeoenly recoegnised types that have
addresses are land parcels and buildings (including flats or apartments). However, other object types, such as water
pumping statiens, and agricultural buildings, are also types of property. Although they do not receive post they may
need to have an address for other functions. This is true in both rural and urban areas. Some other property types that
might have addresses include a sports ground, a foothold or a mooring place. Collectively, objects which can have
addresses are referred to as addressable objects.

The location of an address is most often defined so that it characterises the location of the related addressable object.

Although all national or local address systems share similar concepts and general properties, differences exist in formal
and informal standards, rules, schemas and data models within Europe. Differences also exist in the extent of the
address system, for example, it may be simplified in rural areas. (From revised D2.3)

Governance level: eu-legal
Status: Valid
Annex: I

- ormate: n ™
Other formats: XML @ XML RDF/XML Jsow Atom

Re3gistry 150 19135

Figure 67: Addresses theme within the theme register of the INSPIRE Registry

80

Re3gistry Software documentation
Customising the Re3gistry

INSPIRE
Registry

European Commission > INSPIRE > INSPIRE registry > INSPIRE code list register > Access Restriction

Access Restriction a

& Help us Improving the Re3gisiry software! Please fill our quick survey at hitp:/europa.eu/1Bn84ct (4

[
1=
&
7

Code list values

Label Governance level Status

Figure 68: Restriction code code list within the code list register of the INSPIRE Registry
The detail pages always provide the standard fields as “1label’, ‘definition’, ‘description’
and ‘status’ ; but also they may differ with additional customised fields closely related on the
type (itemclass) of each of the items (e.g. ‘Annex’ for the Theme, ‘Themes’, ‘Application schema’
and ‘Extendibility’ for the Code List).

The web application provided by the Re3gistry software allows you to customise the page for each
of the itemclass and the element type described above (Registry, Register and Items). If the data
file for a specific itemclass has more costumised fields, they can be specified using a JSON file that
describes the fields to be visible for that specific itemclass.

This is done through a configuration file in the JSON format. This file, also called ‘mode descriptor’
is contained in the following folder:

<root folder>/Project package 1l.X/examples/<selected-exampe>/webapp-
configurations/app data/modes/mode.descriptor.json

This ‘mode descriptor’ refers to the elements contained in the related JSON data files (the data
files produced by the Re3gistry) and in the GUI localisation files (described at the beginning of this
section).

The next examples contain snippets from each of the files referenced by the descriptor: JSON data
file and the GUI localisation file.

81

Re3gistry Software documentation
Customising the Re3gistry

To help the understanding of each properties, a color code has also been used: the color used in
the following example of the GUI localisation file, will be used to match the fields in the mode
descriptor files (subsequent sections).

6.2.2.1. GUI localisation file

This is an example of GUI localisation file; it is useful to understand how it is used in the ‘mode
descriptor’ (described in the following sections).

{

"label" : "Label",
"themes" : "Theme list",
"annex" : "Annex",

"status" : "Status",

"layer-label":"Layer label",
"contact":"Contact",

"layers":"Layers",

"registers" : "Registers",
"extensible-none-label":"Not extensible",
"results":"Results",
"latestversion":"Latest version",

"ec":"European Commission",

6.2.2.2. MODE 1 descriptor - Registry page

The color used in the example below are used to match elements between files.

Mode descriptor (mode.descriptor.json)

"model": {
"http://localhost/registry": {
"id":" "’
"listtitlekey":"registers",
"tablecolumns": [

{
"labelkey":"label",
"itemkey":"label->text",
"href" . "id"

82

Re3gistry Software documentation
Customising the Re3gistry

Related JSON data file (registry.en.json)
{
"registry":{
"id":"http://localhost/registry",
"language":"en",
"label": {
"lang":"en",
"text" :"INSPIRE registry"
by
"registrymanager":"European Commission, Joint Research Centre",
"contentsummary": {
"lang":"en",

”

"text":"The INSPIRE infrastructure involves

by

"registers": [

{
"register": {
"id":"http://localhost/theme",
"label": {
"lang":"en",

"text" :"INSPIRE theme register"

}y

As you can see, each of the modes uses the page URL (registry URI) as identifier, this way, the web
application knows, for each of the paged viewed, which mode apply to the web page.

The URL and all of the other properties shall have exactly the same name of the fields contained
in the JSON format or in the GUI localisation files. In the following table, the elements are
explained.

Descriptor JSON file Ul Description
element element translation
key
"id":"registrer" registry.registers It identifies the main element name
.register contained in the JSON list of items
"listtitlekey":"re registers This is the key of the string of the table's
gisters" title

83

"tablecolumns"

"tablecolumns.la

Re3gistry Software documentation
Customising the Re3gistry

Defines the column to be displayed in the
table containing the list of elements
label This defines the id of the string translation

belkey":"label" available in the Ul localization file
"tablecolumns.it registry.registers This property is the reference to the JSON
emkey":"label- .register.label.te data element to be displayed

>text" xt

"tablecolumns.h registry.registers This defines the link associated to the label
ref":" id" register.id described in the previous row.

6.2.2.3. MODE 2 descriptor - Register page

The color used in the example below are used to match elements between files.

"mode2" : {

"http://localhost/theme": {

"id" s

"

14
"listtitlekey":"themes",
"tablecolumns": [

{

"labelkey":"label",
"itemkey":"label->text",
"href" : "id"

"labelkey":"annex",
"itemkey" : " "

"labelkey":"status",
"itemkey":"status->label-> ",
"href":"status->id"

by

Related JSON data file (theme.en.json)

{

"register":
"id":"http:
"language":

"label": {

"lang":
"text":

}y

{
//localhost/theme",

"en",

"en",
"INSPIRE theme register"

"contentsummary": {

"lang":
"text":

themes, as defined

s

"en",
"The INSPIRE theme register contains all spatial data
in the Annexes of the INSPIRE Directive ..."

84

http://inspire.ec.europa.eu/theme/theme.en.json

(MIG) ",

(MIG) ",

Re3gistry Software documentation

Customising the Re3gistry
"registerowner":"European Union",
"registermanager":"European Commission, Joint Research Centre",
"registercontrolbody":"INSPIRE Maintenance and Implementation Group

"submitter":"Members of INSPIRE Maintenance and Implementation Group

"contactpoint": {
"label":"JRC INSPIRE Registry Team",
"email":"inspire-registry-dev@jrc.ec.europa.eu"
}y
"license":{
"label":"Europa Legal Notice",
"uri":"http://ec.europa.eu/geninfo/legal notices en.htm"
by
"registry":{
"id":"http://localhost/registry",
"label": {
"lang":"en",
"text":"INSPIRE registry"
}
}y
"containeditems": [
{
" ":{
"id":"http://localhost/theme/ad",
"version":"0",
m W WD
"label": {
"lang":"en",
"text":"Addresses"
}y
"definition": {
"lang":"en",
"text":"Location of properties based on address

identifiers, usually by road name, house number, postal code."

}s
"description": {
l'lang" : "en"’
"text":"An address i1s an identification of the

fixed location of a property. The full address is ..."

}s
"itemclass": {
"id":" Theme",
"label": {
"lang":"en",
"text":"Theme"
}
}o
"status": {
"id":"http://localhost/registry/status/valid",
"label": {
"lang":"en",
" " . "valid"

}y

"register":{

85

Re3gistry Software documentation
Customising the Re3gistry

"id":"http://localhost/theme",
"label": {
"lang":"en",
"text":"INSPIRE theme register"
}o
"registry":({
"id":"http://localhost/registry",
"label": {
"lang":"en",
"text":"INSPIRE registry"

}y

Each of the modes use the page URL (register URI) as identifier. In the mode 2 descriptor, there is
one descriptor for each of the registers.

In the example above there is the theme register as example.

The URL and all of the other properties shall have exactly the same name of the fields contained
in the JSON format or in the GUI localization files.

In the following table, each of the element is explained.

Descriptor N\ file Ul Description
element element translation
key
"id":"theme" register.con It identifies the main element name contained
taineditems in the JSON list of items (in this case the theme)
theme
"listtitlekey":"th themes This is the key of the string of the table's title
emes"
"tablecolumns" Defines the column to be displayed in the table
containing the list of elements
"tablecolumns.la label This defines the id of the string translation
belkey":"label" available in the Ul localization file
"tablecolumns.it register.con This property is the reference to the JSON data
emkey":"label- taineditem.t element to be displayed
>text" heme.label.t
ext
"tablecolumns.h register.con This defines the link associated to the label
ref":" id" taineditem.t described in the previous row. Since the last
heme.id JSON data item was inside the label->text

element, we use here the parent:id to refer to
the theme.id element.

86

"tablecolumns.la

belkey":"annex"
"tablecolumns.it

emkey":"annex"

"tablecolumns.la
belkey":"status"
"tablecolumns.it

emkey":"status-
>label->text"

"tablecolumns.h
ref":"status->id"

Re3gistry Software documentation

Customising the Re3gistry
annex This defines the id of the string translation
available in the Ul localization file
register.con This property is the reference to the JSON data
taineditem.t element to be displayed
heme.annex
status This defines the id of the string translation
available in the Ul localization file
register.con This property is the reference to the JSON data
taineditem.t element to be displayed
heme.status
Jabel.text

This defines the link associated to the label
described in the previous row.

In some cases, a field could be a multi-value field. In this case, the JSON descriptor is represented
in the following way. You can find a complete example in the mode descriptor file -> mode 2 ->

code list.

"itemkey":"parents=parent->label-> ",

The related JSON data file is

"parents": [
{

"parent": {

"id":"http://localhost/codelist/DesignationValue",

"label": {

"lang" . "en"’

" ":"Designation"

6.2.2.4. MODE 3 descriptor - Item detail page

"mode3" : {
"theme" : {

"id":"theme",
"detailedements": [

{

"labelkey":"annex",
"itemkey": " ",
"topseparator":"true",
"bold":"false"

87

Re3gistry Software documentation
Customising the Re3gistry

}y

Related JSON data file (theme.en.json)

{
"theme" : {
"id":"http://localhost/theme/ad",
"thisversion":"http:// localhost /theme/ad:1",
"latestversion":"http:// localhost /theme/ad",
"language":"en",
o WSUA L
"label": {
"lang":"en",
"text":"Addresses"
by
"definition": {
"lang":"en",
"text":"Location of properties based on address identifiers, usually
by road name, house number, postal code."
by
"description": {
"lang":"en",
"text":"An address is an identification of the fixed location of a
property. The full address is a ..."
b
"governance-level": {
"id":"http://localhost/registry/governance-level/eu-legal",
"label": {
"lang" . "en" ,
"text":"eu-legal"
}
}y
"itemclass": {
"id" . "Theme " ,
"label": {
"lang" . "en" ,
"text":"Theme"
}
b
"status": {
"id":" http://localhost/registry/status/valid",
"label": {
"lang":"en",
"text":"valid"

}
Hy
"register":{
"id":"http://localhost/theme",
"label": {
Hlang" . "en"’
"text":"INSPIRE theme register"

b
"registry":{
"id":"http://localhost/registry",

88

http://localhost/registry/status/valid%22
http://localhost/theme%22
http://localhost/registry%22

"label": {
"lang" : "en",

"text":"INSPIRE registry"

}
}
}

Re3gistry Software documentation
Customising the Re3gistry

Each of the modes use the itemclass as identifier. In the mode 3 descriptor, there is one
descriptor for each of item details page.

In the example above the theme register has been used.

The itemclass and all of the other properties shall have exactly the same name of the fields
contained in the JSON format or in the GUI localization files. In the following table, each of the

element is explained.

"detailedements"

"detailedements.labelkey":"annex"

"detailedements.itemkey":"annex"

"topseparator":"true"

"bold":"false"

theme.annex

annex

This is the container of all the
field to be displayed in the
HTML view. The standard
fields are always visible in the
HTML. If you have additional
fields, you can add it using
this element.

This defines the id of the
string translation available in
the Ul localization file

This property is the reference
to the JSON data element to
be displayed

This property add a separator
between one element and
eanother in the HTML detail
page.

This property render the text
related to this field in bold.

In case the element has a hierarchy, like the code list detail page, some additional elements are
added into the descriptor of this mode (a full example can be found on the mode 3 descriptor file

-> code list).

The additional elements are:

89

Re3gistry Software documentation
Customising the Re3gistry

tablecolumns (already described in the tables above): Defines the column to be displayed
in the table containing the list of elements in the hierarchy (for example, in case the detail
page is a code list, the table will contain the code-values)

relationtablecolumns: Defines the column to be displayed in the table containing the
list of elements with some relation (for example the list of parent of that specific item).

Example of additional fields in mode 3 for the hierarchical elements:

"tablecolumns": [

{

}
Ir

"labelkey":"label",
"itemkey":"label->text",
"href":"id"

"labelkey":"status",
"itemkey":"status->label-> v,
"href":"status->id"

"labelkey":"governance-level-label",
"itemkey":"governance-level->label-> v,
"href":"governance-level->id"

"relationlisttitlekey":"codelists",
"relationlistkey":" o
"relationtablecolumns": [

{

"labelkey":"label",
"itemkey":"label->text",
'lhref'l:'lid"

"labelkey":"themes",
"itemkey":"themes=theme->label-> ",
"href":"theme->id"

"labelkey":"application-schema",
"itemkey" :"applicationschema->label-> v,
"href":"applicationschema->id"

"labelkey":"status",
"itemkey":"status->label-> ",
"href":"status->id"

6.2.2.5. MODE 4 Descriptor - Item detail for hierarchical elements

90

Re3gistry Software documentation

Customising the Re3gistry
"moded" : {
"CodeListValue": {
mid"." ",
"collectionelementid":"codelist",
"detailedements": [

{
"labelkey":"themes",
"itemkey":"themes=theme->label-> ",
"topseparator":"true",
"href":"id",
"bold":"false"

"labelkey":"application-schema",
"itemkey":"applicationschema->label-> ",
"topseparator":"false",

"href":"id",

"bold":"false"

"labelkey":"code-1list",
"itemkey":"codelist->label-> W
"topseparator":"false",
"href":"id",
"bold":"false"
}
1,
"listtitlekey":"narrower",
"tablecolumns": [
{
"labelkey":"label",
"itemkey":"label->text",
"href":"parent:id"

"labelkey":"status",
"itemkey":"status->label-> W
"href" . "id"

"labelkey":"governance-level-label",
"itemkey" :"governance-level->label-> W
"href" . "id"

}y

Related JSON data file

http://inspire.ec.europa.eu/codelist/AccessRestrictionValue/forbiddenLegally/
forbiddenLegally.en.json

{

"w ".{

"id":"http://localhost/codelist/AccessRestrictionValue/forbiddenLegally",
"thisversion":"http://localhost/codelist/AccessRestrictionvValue/forbiddenlLega

91

Re3gistry Software documentation

Customising the Re3gistry
1ly:1",
"latestversion":"http://localhost/codelist/AccessRestrictionValue/forbiddenLe
gally",

"language":"en",
"label": {

"lang":"en",
"text":"forbidden legally"
by
"definition":{
"lang":"en",
"text":"Access to the transport element is forbidden by law."
b
"itemclass":{
"id":"CodeListValue",
"label": {
"lang":"en",
"text":"Code list wvalue"
}
b

"status": {
"id":" http://localhost/registry/status/valid",
"label": {
"lang":"en",
" ":"Valid"
}
}o
"register":{
"id":"http://localhost/codelist",
"label": {
"lang":"en",
"text" :"INSPIRE code list register"
}o
"registry":{
"id":"http://localhost/registry",
"label": {
"lang":"en",
"text" :"INSPIRE registry"

}
s

"governance-level": {
"id":"http://localhost/registry/governance-level/eu-legal",
"label": {

Ulang" . "en" ,
" ":"eu_legal"
}

}o
"themes": |

{"theme" : {
"id":"http://localhost/theme/tn",
"label": {

"lang" : "en",
" ":"Transport networks"

92

Re3gistry Software documentation
Customising the Re3gistry

1,

"applicationschema": {
"id":"http://localhost/applicationschema/tn",
"label”: {

"lang":"en",
" ":"Common Transport Elements"
}

b

"codelist": {
"id":"http://localhost/codelist/AccessRestrictionValue",
"label": {

"lang":"en",
" ":"Access Restriction"

The mode 4 has basically the elements already described in the previous pages. In this case the
table columns element in the mode descriptor describes the column for the narrower table (the
narrower table is visible only if the item has narrower items).

6.2.3.Static pages

The static pages are those pages that have a fixed layout and present a list of elements that are
not available in the data files. It could be seen as a kind of ‘service list’.

An example of static page could be the ‘Status’” page of the INSPIRE registry
(http://localhost/registry/status).

The files describing the static pages are stored in the
‘<root folder>/Project package 1.X/examples/<selected-exampe>/webapp-

configurations/app data/staticpages’ folder
Each of the static pages available in the system has one JSON descriptor file.

To add a static pages just add the related descriptor file. The file name pattern is
<page name>.descriptor.json. In the following example, there is the "Status" static page,
available in the INSPIRE registry.

6.2.3.1. Static page example: status.descriptor.json

"id":"http://localhost/registry/status",
"labelkey":"status",
"descriptionkey":"status-definition",
"listtitlekey":"values",

"types": {

" ":{
"id":"http://localhost/registry/status/invalid",
"labelkey":"invalid",
"descriptionkey":"invalid-desc"

93

http://inspire.ec.europa.eu/registry/status
http://inspire.ec.europa.eu/registry/status%22
http://inspire.ec.europa.eu/registry/status/invalid%22

Re3gistry Software documentation
Customising the Re3gistry

}o

"valid" : {
"id":"http://localhost/registry/status/valid",
"labelkey":"valid",
"descriptionkey":"valid-desc"

by

"superseded™ : {
"id":"http://localhost/registry/status/superseded",
"labelkey":"superseded",
"descriptionkey":"superseded-desc"

br

"retired" : {
"id":"http://localhost/registry/status/retired",
"labelkey":"retired",
"descriptionkey":"retired-desc"

by

"submitted" : {
"id":"http://localhost/registry/status/submitted",
"labelkey":"submitted",
"descriptionkey":"submitted-desc"

(-

Field Description

_ The id of the element shall be the URL of the page
labelkey The key of the translated label contained in the localization files.

clooedareine o The key of the translated description contained in the localization files.

listtitlekey The key of the title for the table contained in the localization files.

types This field contains a list of items, one for each of the values available in the
page. For each type, the key of the list item is the one used to compose the
URL.

Once this file has been created, in order to correctly access the static page, the Apache
configuration file has to be updated by adding the URL rewrite rule for the newly created page. An
example of URL rewrite configuration for the ‘Status’ static page is available in Figure 69.

Figure 69: Example of configuration string for the ‘Status’ static page

Service pages

Status

RewriteRule " /registry/statuss$ /webapp/index.php?static=status [L]
RewriteRule "/registry/status/$ /webapp/index.php?static=status [L]
RewriteRule

94

http://inspire.ec.europa.eu/registry/status/valid%22
http://inspire.ec.europa.eu/registry/status/superseded%22
http://inspire.ec.europa.eu/registry/status/retired%22
http://inspire.ec.europa.eu/registry/status/submitted%22

Re3gistry Software documentation

Customising the Re3gistry
~/registry/status/ (valid|invalid|retired|submitted|superseded) $ /webapp/i
ndex.php?static=status&type=$1 [L]

RewriteRule
~/registry/status/ (valid|invalid|retired|submitted|superseded)/$ /webapp/

index.php?static=status&type=$1 [L]

6.2.4. Customised pages

The customised pages can contain any type of content; an example of those pages could be the
common ‘help”and ‘about’ page.

The files describing the custom pages are stored in the folder

<root folder>/Project package 1.X/examples/<selected-exampe>/webapp-
configurations/app data/custompage

. Inside that folder, there is one folder for each of the custom pages available in the system.
Inside the specific folder, there are two files:

® descriptor.json:itisthe descriptor of the page
* en.php: this file contains the contents (HTML code is allowed) that will be included in the

page.

The name of the folder shall be exactly the name used in the URL. The following example (about
page), shows a correct folder structure:

webapp/app data/custompages/about/descriptor.json
webapp/app data/custompages/about/en.php

6.2.4.1. Example custom page descriptor

"id":"http://localhost/registry/about",
"labelkey":"about-title"

}

The descriptor.json file contains the id of the element that shall be the URL of the target page.
The 1abelkey contains the key to the page title available in the localization files (describe above
at section).

The en.php fileis filled with the HTML to create the custom page.

6.2.5.Website parts

95

http://localhost/registry/about%22

Re3gistry Software documentation
Customising the Re3gistry

The folder ‘<root folder>/Project package 1.X/examples/<selected-exampe>/webapp-

configurations/app data/parts’ contains the mapping files between some parts of the
webapp and the localization file.

Currently the webapp has only the file footer.json that represents the label-key (pointing to the
localization file) and links of each footer menu entry. If you want to customize the footer, you can
just edit the entry in this file (and in the localization files).

96

Re3gistry Software documentation
Developing the Re3gistry

7. Developing the Re3gistry

This guide is especially devoted to those developers that may want to reuse the Re3gistry software
source code.

7.1. Technology

The Re3gistry software requires Java 1.7 or Java 1.8 technology.
The libraries used in the system are described in the Project Object Model (POM) file.
This project is built using Apache Maven technology.

The php web application requires php >=5.4.

7.1.1.Web Server

The Re3gistry needs two different web servers: one to serve the RESTful web service and the other
is a servlet container for the Re3gistry Java webapp.

The two servers used are:
= Apache HTTPD Version 2.4 [APACHE-HTTPD]
= Apache Tomcat Version 7 or Apache Tomcat 8 [APACHE-TOMCAT]

7.1.2.Database

The database layer is handled by EclipseLink library. All the databases supported by EclipseLink can
be used for the system.

Note: only the following database type/version, has been tested for the current version of the
system: PostgreSQL 9.2

7.2. System structure

The Re3gistry software is organised in modules. This concept allows a simpler customisation and
extension of the system.

The main components of the system are the

"= Re3gistryCommon module and
= The Re3gistry webapp.

The coming paragraphs describe the main structure of the software package and its modules.

7.2.1.Module concept

97

Re3gistry Software documentation
Developing the Re3gistry

A module is a Java library that is usually composed of a core part (Java library) but there may also
be accompanied of a presentation part (web pages).

= The module’s core part contains all the logic related to its functionality. Each module needs
to include the Re3gistryCore module in order to access all the common libraries and
functionalities.

= The module’s presentation part is optional (you can access the module's core
functionalities by customising the standard interface provided by the Re3gistry) and it is
contained in the module’s folder of the Re3gistry webapp. This folder contains the user
interface to interact with the function provided by the module and the specific module’s
configuration file. The Re3gistry webapp contains also the main configuration properties
files and all the localization properties files.

7.2.2.Re3gistryCommon module

The Re3gistryCommon module is the basis of whole the software. It contains the object definition
that represents each entity in the system and the manager to work with them (read/write).

This core module has not a related presentation part in the Re3gistry webapp since its function is
to provide the object structure and the main functionalities to the other modules.

The Re3gistryCommon library is composed of different packages:

" Constants: containing a class with all the constants used in this library;

® Managers: containing all the methods to access the data for each bean defined in the
model package;

= Model: containing all the beans related to the information model;

" Utils:containing several general utility classes, such as stringUtils Or Logger class.

7.2.3.Re3gistry software interface

The Re3gistry software contains the web interface to manage and use the functionalities provided
by each module. In this component, all the configuration files are stored, both related to the core
module and to each of the additional module.

Below there is a description of the components (organised by folders) contained in the Re3gistry
webapp.

" Web Pages: contains the files related to the web pages (jsp, css, js, images etc.). The
‘modules’ folder, inside the ‘Web Pages’ one, contains specific web pages and
configuration files.

= source: contains the Java class related to the Re3gistry webapp (constants, module
manager functionalities, servlets, utility, etc.).

" Resources: contains the configurations and localization files. Below there is a description
for each file within it:

O META-INF/persistence.xml: file with the configurations related to the database

98

Re3gistry Software documentation
Developing the Re3gistry

O configurations/Application.properties: file containing the main Re3gistry
configurations (common to all the modules);

O configurations/modules: containing the properties related to each module. The
file name shall be exactly as the name of the module’s folder.

O configurations/logcfg.xml: configuration related to the logging system;

) localization/Application/localizationBundle_xx.properties:thefomer
localization contains all the properties files related to the localization of the system.
There is also a subfolder named ‘Application’ containing the core system
localizations. Then, each module has its own localization file contained in a folder
called exactly as the library part of the module.

7.3. Source code

The following section will show how to install and run the Re3gistry using the NetBeans IDE step
by step [NETBEANS].

We have chosen NetBeans'® for this documentation because it is the official open source IDE
provided by Java.

7.3.1.Load projects

The first step is to load the projects contained in the ‘source’folder of the package using NetBeans
IDE, as shown in Figure 68. The project is available at:

<root folder>/Project package 1.X/source

O Open Project =
! Lookin: | i trunk]l &
~ :
Recentltems | @@Re3gstry
+)-{ill9 Re 3gistryCommon
#)-{ilg Re3gistryData S
4)- g RegistryStaticizer Spenioanad o
Desktop
It
My Documents
Computer
':.
‘,l! File name: E:\somedir \projects\Inspire \Registry Re 3gistry_04_ProjectPackage Open Project
twork
Network Fes of type: [project Folder <] [concel

7.3.2.Configuration files

Figure 70: Loading the project with NetBeans IDE

16 https://netbeans.org/

99

https://netbeans.org/

Re3gistry Software documentation
Developing the Re3gistry

For convenience, all the configurations are placed under the build profile’in the POM files of
the Re3gistry web project. These Project Object Model (POM) files can be found under the project’s
root folder, See an example of a POM file in Figure 71.

Edit these configuration settings using the local settings:

The path for the logs file;

The information regarding the database;

The path for the temporary import folder/ the custom export data folder (if it is left blank,
the webapp folder will be taken).

To customise the set up for all the feature of each module, check the following properties file:

Re3gistry/src/main/resources/configurations/modules/Application.propert
ies: this file contains all the main configurations for the system. To run the system the
properties to update are ‘application.language.available’ which represents the available
language on the interface and the related language label, ‘application.contact’,
‘mail.sender’, ‘mail.recipient’” which are the e-mail address of the contact, sender and
respectively recipient and ‘mail.smtp.host” which is the server host smpt email;
Re3gistry/src/main/resources/configurations/modules/RegistryData.proper
tiess
O data.operatinglanguage: this property represents the main language of the
system;
O data.supportedlanguage: this property represents the list of the languages
supported by the data management system.
Re3gistry/src/main/resources/configurations/modules/RegistryStaticizer/
RegistryStaticizer.properties.
0 xml.formats.list=xml,json,html,atom: the formats to be used by the xslt
transformations (separated by comma)
O staticizer.solr.format=solr:the solr name.

Figure 71: Example POM file

<profiles>

<profile>
<id>env-devl</id>
<activation>
<property>
<name>env</name>
<value>devl</value>
</property>

</activation>

100

Re3gistry Software documentation
Developing the Re3gistry

<properties>
<!-- Loggers configurations -->

<Default.log.file.dir><ROOT FOLDER>/Re3gistry-
data/logs/Complete.log</Default.log.file.dir>

<Re3gistry.log.file.dir><ROOT FOLDER>/Re3gistry-
data/logs/Re3gistry.log</Re3gistry.log.file.dir>

<Re3gistryData.log.file.dir><ROOT FOLDER>/Re3gistry-
data/logs/Re3gistryData.log</Re3gistryData.log.file.dir>

<Re3gistryStaticizer.log.file.dir><ROOT FOLDER>/Re3gistry-
data/logs/Re3gistryStaticizer.log</Re3gistryStaticizer.log.file.dir>

<!-- Database configurations -->

<persistence.jdbc.url>jdbc:postgresqgl://db ip:5432/inspire regi
stry </persistence.jdbc.url>

<persistence.jdbc.driver>org.postgresql.Driver</persistence.
jdbc.driver>

<persistence.jdbc.username>db username</persistence.jdbc.userna
me>

<persistence.jdbc.password>db password</persistence.jdbc.passwo
rd>

<!-- Specific module configurations -->

<!-- RegistryData -->

<RegistryData.import.dir><root folder>/Re3gistry-
data/temp</RegistryData.import.dir>

Lle= [==>
<!-- RegistryStaticizer -->
<!-- The root folder where to save the files produced by the Staticizer. ->

<RegistryStaticizer.export.dir><ROOT FOLDER>/Re3gistry-
data/staticizer</RegistryStaticizer.export.dir>

<!-- The path from where to read the xslt transformation and the
translations for the GUI interface -->

<RegistryStaticizer.xsl.dir><ROOT FOLDER>/Re3gistry-
data/xsl</RegistryStaticizer.xsl.dir>

</properties>
</profile>

</profiles>

101

Re3gistry Software documentation
Developing the Re3gistry

Before starting the build process, ensure that the build profile (specified in the POM) for each the
Re3gistry web project is selected. To do check this, in NetBeans go to ‘set Configuration’under
the project and choose the right profile (right click on the project -> ‘set Configuration’).

7.3.3.Choose the authentication method

In order to choose the desired authentication method, two configuration files have to be updated.
Below you can find a reference for both files in each case.

= source/Re3gistry/src/main/resources/Application.properties
= source/Re3gistry/src/main/webapp/WEB-INF/web . xm1

The Application.properties file contains the property that allows the switch between ECAS or
SHIRO authentication method.

The default configuration is Apache SHIRO as authentication method.

Login type: SHIRO | ECAS
application.LoginType=SHIRO

In addition, the web.xml file has to be updated based on the authentication
method selected.

For example, the default configuration is Apache SHIRO: the SHIRO related
lines are uncommented and the ECAS lines are commented:

<!--SHIRO authentication configs-->
<listener>

<listener-
class>org.apache.shiro.web.env.EnvironmentLoaderListener</listener-class>

</listener>

<filter>
<filter-name>ShiroFilter</filter-name>
<filter-class>org.apache.shiro.web.servlet.ShiroFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>ShiroFilter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>
<dispatcher>ERROR</dispatcher>

</filter-mapping>

102

Re3gistry Software documentation
Developing the Re3gistry

<!--END SHIRO authentication configs-->

<!--ECAS authentication configs-->
Ll==
<login-config>
<auth-method>ECAS</auth-method>
<realm-name>Re3gistry Realm</realm-name>

</login-config>

<security-constraint>
<web-resource-collection>
<web-resource-name>not protected content</web-resource-name>
<url-pattern>/res/*</url-pattern>
<url-pattern>/Changelocale</url-pattern>
<url-pattern>/login</url-pattern>
<url-pattern>/login.jsp</url-pattern>
</web-resource-collection>
</security-constraint>
<security-constraint>
<web-resource-collection>
<web-resource-name>inspire-regadmin</web-resource-name>

<description>Requires users to be authenticated but does not
require them to be authorized</description>

<url-pattern>/*</url-pattern>
</web-resource-collection>
<auth-constraint>

<role-name>*</role-name>
</auth-constraint>
<user-data-constraint>

<description>Encryption is not required for the application in
general .</description>

<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>
</security-constraint>

-—>

<!--END ECAS authentication configs-->

103

Re3gistry Software documentation
Developing the Re3gistry

If the chosen authentication method is ECAS, comment the SHIRO configuration lines and
uncomment the ECAS ones.

To use the ECAS authentication method, follow the ECAS installation guide at https://ies-
svn.jrc.ec.europa.eu/projects/registry-development/wiki/Re3gistry ECAS install.

7.3.4.Database creation and initialisation

The database initialisation procedure creates the structure of the database and populate the
registry contents. Execute the database initialisation using the example SQL scripts available in the
project’s package /example/<chosen_example>/database'fO|der.

The database script could be executed from either the command line or using a Graphic User
Interface (GUI) such as pgAdmin.

The first step is to create a database. After the database has been created, the initialisation script
can be executed.

Open the create-tables.sql into an SQL editor and run the queries.

Do the same for the database-initialization.sql and database-localization.sql. Itisimportant
to run thecreate-tables.sqgl before the any other scripts. The database-
initialization.sqgl and database-localization.sqgl files contain some sample data.

If the clean-up of the database is needed, in the example packages, there is also a drop-
tables.sql script.

For each new register to be added, the register table, the itemclass table and the localisation table
should all be filled in; for more information related to the creation of new register, please refer
to the customization guide at .

7.3.5.Build projects

To get the system running, build each project and start the web application. To build the project,
right click on the project name and select ‘build’ or ‘clean and build’.

7.3.6.Creating new modules

To start creating a new module, it is important to understand the module’s structure by reading
the chapter and taking a deep look at one of the modules included in the package (for example
the Data module or the Staticizer Module).

After understanding the structure, the development of a new module can be started from an IDE
like NetBeans. The following guide is provided using the NetBeans IDE as example.

7.3.6.1. Stepl

104

https://ies-svn.jrc.ec.europa.eu/projects/registry-development/wiki/Re3gistry_ECAS_install
https://ies-svn.jrc.ec.europa.eu/projects/registry-development/wiki/Re3gistry_ECAS_install
https://ies-svn.jrc.ec.europa.eu/projects/registry-development/wiki/Re3gistry_1_1_quick_install#_cp6.4

Re3gistry Software documentation
Developing the Re3gistry

Open the main project contained in the project package (project package folder/source).

7.3.6.2. Step?2

Create a new project by right clicking on the project browser and click on new project”as shown
in Figure 72.

ipue Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help
PSS D O TH P B -@-
Projects % | Services Files 2
& @) Resgistry

&S Re3gistryCommon

@ %y RedgstryData
-y RegistryStaticizer

New Project...

Mew File...

Open Project... Ctrl+Shift+0
Open Recent Project F
Project Group »

Build Project F11
Clean and Build Project Shift+F11

Figure 72: Creating new project from the project browser

Choose Maven’ -> ‘Java Application’in the opened window, and then click the ‘next” button
(See Figure 73).

105

Re3gistry Software documentation
Developing the Re3gistry

(@ New Project L=)
Steps ChooseProject
;. Choose Project Q Fiter: |]
Categories: Projects:
@ lava - Java Appication
[Javarx JavaFX Applcation
) Javaweb Web Appication
£38 Modue
-y e
B savecad E :::prselaphmcsm
) avaME NetBeans Module
@ NetBeans Application
), PP POM Project
) Groovy Project from Archetype
L@ s 2 Project with Existing POM
Description:
A simple Java SE application using Maven.
(<o] [Cne>] [Frh | [Lconl] (b]

Figure 73: Project type selection
In the following window (See Figure 74), give a name to the new module; in this example the
‘NewModule’ name is used.

Projects | Services | Files | 5]
&-BgRe3gstry

& & Re3gstryCommon

@ % RedgstryData

@8 RegstryStatiizer

© New Java Application =]
Steps. Name and Location
1. Choose Project . |NewModule
2. Name and Location | J
Project Location: y\runk | [Browse... |
pect [J
Artifact Id: [Newtodute]
Group Id: |eu.europa.ec]
Version: 0.4]
Package: |eu.europa.ec. | (Optional)

(L<gack][o> |[[Fnsh][concd][neo]

Figure 74: Module name

106

Re3gistry Software documentation
Developing the Re3gistry

7.3.6.3. Step3

Go to the newly created project and edit the POM file, to insert the dependency to the
RegistryCommon module (See Figure 75).

Figure 75: POM edit example

<dependency>
<groupld>eu.europa.ec.Re3gistrycommon</groupId>
<artifactId>Re3gistryCommon</artifactId>
<version>x.x</version>
</dependency>

< !-- Replace x.x with the right version of the module -->

7.3.64. Step4

The library component of the module is now ready. To start the development, create the required
package and classes in the project’s source folder.

It is important to create the Class ‘Constants.java’ under package

‘eu.europa.ec.newmodule.constant’. Thisisa common used class containing all the constants
related to this module.

This class shall contain at least the class name (See Figure 76).

Figure 76: Constants.java example

package eu.europa.ec.newmodule.constants;

public final class Constants {

/* HRARRA AR 2/
/* #########H# Common constants #H#E##FFFFFF */

/**
* The name of this module
*/
public static final String MODULE NAME = "NewModule";

7.3.6.5. Step5

107

Re3gistry Software documentation
Developing the Re3gistry

If the new module requires a dedicated interface, the user shall create it using the following
instructions. Otherwise, you can jump to Step 6.

Open the Web Pages folder in the Registry webapp project. Search the modules folder, right click
on it and select New’ - > Folder’ (See Figure 77). Name the new folder exactly as the previously
created Java Application.

Frojecis & services riues =) || [53] POM.XMI [RESGIST YL
- S gNewdodule Graph
| 2 @)gRe3gistry =
=g WebPages 20
@-[)) METAINF i
#-1), WEB-INF 22 4
j mndudes 23 </bui
3) Re3 New 4 {Q] Java Class... L
@ () Re3 Find... Ctrl+F | [JavaPackage...]
B4 res (@ sse.. e
3 Cut CtrleX | r
i SN |#] Entity Classes from Database...
&g RESTul wel Copy Ctrl+C e
@[l Source Pack Paste Ctrl+V 9 Folder.. i
@) TestPackag l@] Serviet...
-y Other Sourc Delete Delete | [&] JavaScript File...
G- @ Dependend Refactor ' [8] Properties File...
#- @ JavaDepen i
- g Project Files History) @ HTFAL... [l
-8 Re3gistryComm Subversion | & Entity Class...
: & Re39|stry03u. ; Refresh Folder @ JsF Pages from Entity Classes...
¢ @ Re3gistryStati @ Web Service...
Tools ' @ Web Service Client... <
Properties | & RESTful Web Services from Database... |
Other...
[N

Figure 77: Creation of the module's folder

7.3.6.6. Step6

Create the module’s property file, inside the Other sources - configurations/modules’
project folder.

This folder is located under Re3gistry/WEB-INF/classes/configurations/modules) with the
same module name NewModule.properties’, see Figure 78.

108

Re3gistry Software documentation
Developing the Re3gistry

Projects %]

&

)&

{* 1+

&

The required property keys for all the new modules are the following:

= module.active=true —
= module.menuitem.visible=true —

&

#-&» NewModule
= .eRe39|stry
4o\Veb Pages
/@ RESTful Web Services
G- | fn gSource Packages
G- | fn gTest Packages
=] ,bBOther Sources
ZJ-gjy src/mainjfresources

EEgMETA-INF

- Egconfigurations
} tt]oconﬁgurahons modules

o8 —

[+ [E] Re3gistryData. properhes
@ Re3gistryStaticizer.properties

} t_]olocalizab'on Application
} [:_a:]olocalnzahon Re3gistryData
[+ Lf_jolocalnzanon Re3gistryStaticizer
B-gpy src/main/webapp/modules -> configurations/modules
- @ Dependencies
@ JavaDependencies
&g ProjectFiles
; E’;’] pom.xml
i E] settings.xml
@BReE}gistryCommon
- pgRe3qgistryData
- B yRe3qistryStaticizer

Figure 78: Module's properties file

if set to true, the module is active and is loaded in the system.
if this property is true, the menu entry related to this

module is shown in the main system webpage. If no module has this property as visible,
the menu bar is not visible.
= module.menuitem.label=Data — This property represents the label of the menu item in
the system main menu.
= module.homewidget.enabled=true — This property enables/disables the system to
show the module widget in the home page.
= module.dateformat=dd-MM-yyyy HH:mm:SS — The module date/time format.
* module.menuitem.order=2 — The order in which this menu item is shown in the main
menu. The higher values will be displayed later.

7.3.6.7. Step7

Add the localization files in the ‘Other sources’ -> ‘src/main/resources/localization’ folder.

109

Re3gistry Software documentation
Developing the Re3gistry

To do this, right click on the Other sources’ -> ‘src/main/resources’folder and select New’

-> ‘Folder’ (See Figure 79).

£ NewModude Souce | Hstory |[@ B -E-QBFTER|IF LD
3 ®°Rf39sm’ 53| width: 430px !important:
@ [ggWeb Pages sa| L3
@- (g RESTul Web Services =
i @ %"?‘;‘:P 9 56; .dataTables wrapper .ui-toolbar {
b i & 57 padding: S5px:
=) unotherSo\mes se|)
o = |
GMETA New » 3 Folder..
® @ e = paginate {
& @omnﬁgnﬁow = (| Empty File... = A
. ind... th: auto;
(Egeonfiguratior JSP...
g @ob“""m"‘ Paste Ctrl+V HTML...
@ By t_on.F & Serviet. info {
& [glocaization. Histo = =
@B! AT 4 Java Class. ding-top: 3px;
e Subversion
@ g Dependendes B Java Package...
2 Q: :vaoe;:ﬂmoes Tools Entity Class... ay thead th {
Lo 3;:“: & Entity Classes from Database... ding: 3px Opx 3px 10px:
oRe JSFP fi Entity Cl B0r: pointer;
) bgReWsWDah -F] ages from Entity Classes... e
o & jRe3gistryStatiozer Web Service... : ’

@ Web Service Client...
& RESTful Web Services from Database...

les wrapper .ui-widget-header {
c-weight: normal;

Figure 79: Localization folder for the new module
Name the new folder 1ocalization/NewModule’ (See Figure 80).

110

Re3gistry Software documentation

Developing the Re3gistry
S -
Projects ® | ol [P senvices m|[["jFies m| [pom.xmi [Re3gstry] = Wy jo.data. table.css |
bw Sorce |Hotoy | B-H-Q T FELIFES (220 0|0 d
- Bgresgtry 53 width: 430px !impertant;:
@ [fggitieb Pages sa Ly
@[RESTA Web Services o
@ L"“ﬂ?"“pm $6/] .dataTables_wrapper .ui-toolbar {
@ [fpgTest Padages 57 padding: Spx;
& [JfagOther Sources 5)
5] Bhéma\kmm 5
L WAN &0 .dataTables paginate {
@ Eﬂm"m &1 T width: autos
- [yeonfigurations. modules o)
& Ermnncssmntes 3
) 64|] .dataTables info {
- [glocakzation. Re JgistryStaticzer
B} srchmainwebappjmodues -> confy () New Foider 2
@ g Dependences
® Jg Tva Steps Hame and Location
@[ProjectFies 1. Choose File Type Folder Name: localization/MewiModule
& gbamh'“m 2. Mame and Location
- ErgResgstryData -
- pRegstryStaticzer Project: :MW |
Parent Folder: srcimain\resources.
Created Foider: 3sProject_package 0. istry e
< Back Next > Frich | [cancel || hep 2

Figure 80: Localization properties folder
Then create a file for each language using the following naming pattern (See Figure 79):

'LocalizationBundle_[language_code] .properties’.
The minimum set of property to be available in the localization files are:

= The module’s title: common.pagetitle=New Module
= The module’s description: main.description=Descriptive text

111

Re3gistry Software documentation

@-[jg RESTful Web Services
@ [} gSource Packages
- [j3 gTest Packages
= [boOIher Sources
E] &3 src/main/resources
- EElgMETA-INF
. (5 gconfigurations
- [gconfigurations.modules
- [glocalization. Application
& [glocalization.NewModule
o
i [glocalization.Re3gistryData
- [glocalization.Re3gistryStaticizer
| - 5{3 src/main/webapp/modules -> configurations/modules
- g Dependencies
@ ® JavaDependendies
‘ @ k& ProjectFiles
- & gRe3gistryCommon
& sRe3gistryData
- & gRe3gistryStaticizer

Developing the Re3gistry
Projects % =]
@& NewModule
El @oRehstrv
- [JpgWeb Pages

Figure 81: Module's localization properties file

7.3.6.8. Step8

Add into the logger configurations the entry relative to this new module. Open the logcfg.xml

file under Other sources’—> configuration.

Add the entry related to the new module as defined below.

Note that this example is using maven profile properties. In this case the property key related to

this logger file has also to be added to the POM file.

112

Re3gistry Software documentation

Developing the Re3gistry
Figure 82: Logger configurations

<!-- NewModule -->
<appender name="appender.NewModule"
class="org.apache.log4j.DailyRollingFileAppender">

<param name="File" value="${NewModule.log.file.dir}"/>

<param name="DatePattern" value="'.'yyyy-MM-dd"/>

<layout class="org.apache.logd4j.PatternLayout">

<param name="ConversionPattern" value="%d - %-5p - %-10c [%C{1}.%M:%L]
$msn" />

</layout>
</appender>

<logger name="NewModule">
<level value="info"/>
<appender-ref ref="appender.NewModule"/>

</logger>

7.3.6.9. Step9

The module structure is now complete. The next step is to create the required web pages and to
start the development of the functionalities for the module (both in the library and in the web
part).

The web pages shall be placed in the module’s folder root, created at .
There are two file required:

" main.jsp:contain the main web page of the module, with all the functionalities.
" widget.jsp: this page represents a sort of summary that can be placed in the home
page of the system.

The main structure of the modules can be understood by having a look at the files from the modules
available in the project package.

There are some particular module related code snippets, used in the web pages that are explained
below.

" S${module.localization['property.name']} —Itisused to retrieve a specified text
in the language selected by the user. The keys passed as argument to this method has
to be defined in the module specific localisation file (created at Step 7).

" S${module.properties['property.name']} — It is used to retrieve a specific
properties related to this module. The keys passed as argument are defined in the
module’s related properties file (defined at Step 6).

113

Re3gistry Software documentation

Developing the Re3gistry
Index of keywords
A E
Addition, 23, 25, 26, 31
Additional fields, 23 ECAS, 11, 13, 37, 38, 45, 46, 104, 105, 106
administration panel, 19, 36, 48, 49, 54, 63, 64, 65 email notification, 32, 52
Apache SHIRO, 45 endpoint, 64
Application.properties, 41, 42, 45, 46, 101, 102, 104 Errors, 30
authentication method, 45 external items, 15
Autocomplete, 67 externally governed items, 23
Externally governed items, 23
8 F
base URI, 45
Build projects, 106 federation, 13, 15, 67
feedback, 13
¢ G
changelog, 15
Clarification, 23, 26, 27, 31 GUI, 19
collection, 17, 24, 26, 28, 29, 30, 31, 32, 56, 63, 64, 65, 78, gui-languages, 34
105
conf.php, 59, 64, 66 H
configuration file, 44, 45, 57, 58, 60, 61, 66, 83, 96, 100
contact point, 69 HTTP header, 56
content-negotiation, 12, 34, 55, 56, 57 HTTP server, 60
core.properties, 63
costumisation, 33 |
costumised registers, 71
costumised registry, 68 ignore warning, 30, 32, 50
create-table.sql, 39 import, 13, 17, 19, 20, 21, 22, 30, 32, 36, 43,50, 51, 74, 77,
create-tables.sql, 39, 68, 106 78,102, 103
CSV, 11, 13, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32 import data file, 19, 21
customisation, 62, 66, 99 Import data file, 22, 74
customised attributes, 24 index, 15, 24, 34, 37, 64, 97
Customised attributes, 19 indexing, 34
information model, 16
D INSPIRE registry, 12, 15, 17, 19, 38, 85, 87, 91, 94, 95
inspire-example, 38, 44, 50, 60, 61
data consistency, 21 Installing, 37, 58, 62
data localisation, 19 Internal items, 23
data management module, 20 Invalid, 18, 74
Data management module, 21 Invalidation, 23, 28, 31
data staticization module, 20 item, 17
data storage, 32 item keys, 34
Database, 19, 38, 50, 99, 103, 106 itemclass, 17, 22, 23, 25, 26, 27, 28, 29, 30, 33,71, 72, 73,
database-initialization.sql, 39, 68, 106 74,76, 78, 83, 87,90, 91, 94, 106
database-localization.sql, 39, 73, 106
deployer module, 20, 35, 79 L
descriptor, 25, 26, 27, 67, 83, 84, 86, 88, 89, 91, 95, 97
descriptor file, 67, 89, 91, 95 language mapping file, 34
download, 13 Language representations, 19
drop-table.sql, 39 libraries, 38, 46, 62, 99, 100

114

License, 14

localisation, 19, 34, 73, 106

log, 25, 28, 29, 30, 43, 60, 103, 115
logcfg.xml, 41, 43, 101, 114
logger.xml, 59, 60

logging system, 60

logs, 60, 102, 103

Main fields, 23

mandatory fields, 23, 24

master language, 22, 70, 73

master xml files,, 32

module, 20, 21, 24, 32, 34, 35,57, 79, 99, 100, 101, 102,
103, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116

multilingualism, 19, 69, 73

N

neutral-example, 38, 44, 50, 52, 53, 60, 61, 66, 68, 76, 78,
81

o)

open source, 13, 15, 101

persistence.xml, 42
POM, 11, 99, 102, 104, 109, 114
procedure status, 36

R

Re3gistry 1.3, 15
Re3gistryData.properties, 43
Re3gistryDeployer.properties, 44, 54
Re3gistryStaticizer.properties, 43
readme.md, 38

recursive, 28

register, 17

register extension, 23

registry, 16

Registry core module, 20, 21
RegistryData.properties, 42, 102
RegistryDeployer.properties, 42, 79
RegistryStaticizer.properties, 42, 102
relationship, 17, 72

RESTful, 11, 13, 20, 34, 55, 56, 99
RESTful web service, 20, 34, 55, 56, 99
Retired, 18, 74

Retirement, 23, 30, 31

RoR, 13, 15, 67

RSS, 44

115

Re3gistry Software documentation
Developing the Re3gistry

Run full export, 52

schema.xml, 63

separator, 23

server, 12, 20, 35, 36, 41, 43, 53, 55, 56, 57, 58, 60, 61, 79,
102

SHIRO, 46

shiro.ini, 46, 49

solr, 34, 44, 53, 55, 62, 63, 64, 65, 102

solr.xml, 62, 63

source code, 99

SQL scripts, 38, 106

standard attributes, 18, 19

Staticisation, 32

status, 17, 18, 23, 25, 26, 36, 51,52, 70, 71, 73, 74, 83, 84,
86, 87, 89, 90, 92, 93, 94, 95, 97

Submitted, 18, 74

successor, 27, 28, 29, 31, 77

Superseded, 18, 74

Supersession, 23, 27, 29, 31

system architecture, 20

System requirements, 37, 55

T

Tomcat, 12, 37, 41, 42, 43, 44, 45, 46, 47, 48, 62, 63, 99

U
URI, 11, 13, 15, 17, 23, 24, 26, 45, 57,69, 71, 72,79
uriname, 24, 33, 56, 69, 70, 71, 72
uuid, 69, 70, 71, 72
\Y)
Valid, 18, 74, 87, 90, 94
var, 34,57, 58, 59

w

Warnings, 30

web service, 13, 16, 19, 38, 55, 56, 57, 62, 65
web.xml, 46

webapp, 19

X

XSLT, 11, 32, 33, 34, 44,52, 78

4

ZIP, 21, 22

	Table of contents
	Abbreviations
	Bibliography
	1. Overview
	1.1. What is the Re3gistry?
	1.2. Features and capabilities
	1.3. Getting the software
	1.4. License
	1.5. Background
	1.1. Acknowledgments
	1.2. What is new in the Re3gistry 1.3

	2. Understanding the Re3gistry
	2.1. The Re3gistry information model
	2.1.1. The information model components
	2.1.1.1. The registry component
	2.1.1.2. The register component
	2.1.1.3. The itemclass component
	2.1.1.4. The item component
	2.1.1.5. The status component

	2.1.2. Standard and customised attributes
	2.1.2.1. Registry standard attributes
	2.1.2.2. Register standard attributes
	2.1.2.3. Item standard attributes
	2.1.2.4. Custom attributes

	2.1.3. Language representations: localisation

	2.2. The Re3gistry system architecture
	2.2.1. Modules overview
	2.2.2. Registry core module
	2.2.3. Data import module
	2.2.3.1. Import data file
	2.2.3.1.1. Data file structure
	2.2.3.1.2. Internal and external items
	2.2.3.1.3. Data actions and CSV formats
	2.2.3.1.3.1. Addition
	2.2.3.1.3.2. Clarification
	2.2.3.1.3.3. Supersession
	2.2.3.1.3.4. Invalidation
	2.2.3.1.3.5. Retirement

	2.2.3.2. Data analyser
	2.2.3.3. Data storage

	2.2.4. Staticiser module
	2.2.4.1. Staticisation process
	2.2.4.2. XSLT
	2.2.4.3. Static element localisation
	2.2.4.4. Additional information

	2.2.5. Deployer module

	2.3. Re3gistry administration panel

	3. Installing the Re3gistry
	3.1. System requirements
	3.2. Package details
	3.3. Important notes
	3.4. Database configuration
	3.4.1. Creating a new database
	3.4.2. Running the SQL scripts to create tables and populating them

	3.5. Configuring the Re3gistry
	3.5.1. Move the binaries folder to Tomcat’s webapp folder
	3.5.2. Modifying the configuration files
	3.5.2.1. persistence.xml
	3.5.2.2. Application.properties
	3.5.2.3. logcfg.xml
	3.5.2.4. Re3gistryData.properties
	3.5.2.5. Re3gistryStaticizer.properties
	3.5.2.6. Re3gistryDeployer.properties [Optional]

	3.5.3. Setting up the authentication method
	3.5.3.1. Available authentication methods
	3.5.3.2. Choosing and implementing the authentication method
	3.5.3.2.1. Application.properties
	3.5.3.2.2. web.xml

	3.5.4. Adding users to SHIRO

	4. Using the Re3gistry
	4.1. Accessing the Re3gistry administration panel
	4.2. Importing data
	4.3. Exporting and converting data files
	4.4. Deploying the contents
	4.4.1. Moving data from the Re3gistry software to the server
	4.4.2. Creating a modification summary RSS feed

	5. Serving the Re3gistry contents
	5.1. System requirements
	5.2. Web service
	5.2.1. RESTful web service
	5.2.2. Standard web service

	5.3. Installing the Re3gistry webapp
	5.3.1. Copy the sample web application folder
	5.3.2. Setting the web application
	5.3.3. Configuration
	5.3.3.1. conf.php
	5.3.3.2. logger.xml

	5.3.4. Configuring the HTTP server
	5.3.5. Set up the service-specific configuration

	5.4. Managing solr
	5.4.1. Installing solr
	5.4.2. Configuring solr
	5.4.2.1. solr.xml

	5.4.3. core.properties of solr registry collection
	5.4.3.1.1. Schema.xml

	5.5. Connecting solr to the Re3gistry webapp
	5.6. Indexing your registry contents
	5.7. Testing the web service
	5.8. INSPIRE register federation descriptors files - RoR descriptors

	6. Customising the Re3gistry
	6.1. Customising the Re3gistry contents
	6.1.1. Creating a costumised registry
	6.1.1.1. Setting the registry parameters
	6.1.1.2. Defining the email address for the registry contact point
	6.1.1.3. Setting the supported languages
	6.1.1.4. Setting the status values

	6.1.2. Creating costumised registers
	6.1.2.1. Setting the register parameters
	6.1.2.2. Defining the itemclass

	6.1.3. Translating the content
	6.1.4. Import data file
	6.1.4.1. Simple register
	6.1.4.2. Hierarchical register
	6.1.4.2.1. Hierarchical register – first level
	6.1.4.2.2. Hierarchical register – second level

	6.1.5. Transformation files
	6.1.6. Deployer configuration

	6.2. Customising the Re3gistry web interface
	6.2.1. Webapp structure
	6.2.2. Modes
	6.2.2.1. GUI localisation file
	6.2.2.2. MODE 1 descriptor - Registry page
	6.2.2.3. MODE 2 descriptor - Register page
	6.2.2.4. MODE 3 descriptor - Item detail page
	6.2.2.5. MODE 4 Descriptor - Item detail for hierarchical elements

	6.2.3. Static pages
	6.2.3.1. Static page example: status.descriptor.json

	6.2.4. Customised pages
	6.2.4.1. Example custom page descriptor

	6.2.5. Website parts

	7. Developing the Re3gistry
	7.1. Technology
	7.1.1. Web Server
	7.1.2. Database

	7.2. System structure
	7.2.1. Module concept
	7.2.2. Re3gistryCommon module
	7.2.3. Re3gistry software interface

	7.3. Source code
	7.3.1. Load projects
	7.3.2. Configuration files
	7.3.3. Choose the authentication method
	7.3.4. Database creation and initialisation
	7.3.5. Build projects
	7.3.6. Creating new modules
	7.3.6.1. Step 1
	7.3.6.2. Step 2
	7.3.6.3. Step 3
	7.3.6.4. Step 4
	7.3.6.5. Step 5
	7.3.6.6. Step 6
	7.3.6.7. Step 7
	7.3.6.8. Step 8
	7.3.6.9. Step 9

	Index of keywords

