

ECP-2007-GEO-317001

OneGeology-Europe

Scientific/Semantic Data Specification and Dictionaries

- Generic Specification for Spatial Geological Data in Europe -

Objective of this document

This document represents the OneGeology-Europe Scientific Data Specification produced by Work Package 3.

In addition it provides guidance on the vocabulary, the terms, their definitions and their relationships, which must be used by all OneGeology-Europe participants. An introductory explanation of the relevant parts of the GeoSciML data model along with guidance on the usage of GeoSciML is also included to provide initial context.

Deliverable number	D3.1, Version 2.0
Dissemination level	Public
Delivery date	31 rd August 2010
Status	Version 2.0
Author(s) WP3 Leader WP 3 Core Team	Kristine Asch M. Bavec, S. Bergman, F. Perez Cerdan, P. Declercq, S. Hennings, D. Janjou, S. Kacer, M. Klicker, J.L. Laxton, M. Nironen, M. Pantaloni, C. Schubert
Reviewed by	A. Smith

This project is funded under the eContentplus programme

A multilingual Community programme to make digital content in Europe more accessible, more usable and exploitable

^{*}OJL 79, 24.03.2005, p.1

Executive Summary

OneGeology Europe (1G-E) is delivering a web accessible, semantically and technically interoperable geological dataset, with progress towards harmonisation, for the whole of Europe at 1:1 million scale. This is based on the individual geological datasets held by each geological survey in Europe, and which may differ considerably with respect to their contents, description and geometry. To make these data interoperable is a considerable task and 1G-E Work Package 3 (WP3) is delivering the essential basis for that endeavour: the 1G-E Data Specification.

This document presents in detail the classifications, definitions, terms and Uniform Resource Names (URN) of the 1G-E Geology Data Specification, which are based on existing standards as far as possible. In addition it explains their use and encoding in GeoSciML. This specification will be the basis for each geological survey participating in 1G-E to describe the geology of their country within the project. It is only possible to achieve semantic interoperability and harmonisation of the data by using this common vocabulary.

This specification will also form one of the foundations and inputs for the future INSPIRE Geology Data Specification.

Table of Contents

Executive Summary 1. Introduction	
1.1 Overview of OneGeology-Europe (1G-E)	4
1.2 The Relationship of the 1G-E Data Specification and INSPIRE	5
1.3 Purpose of the Data Specification	
1.4 Development process of the 1G-E Data Specification	
2. Definition of 'Geology' for 1G-E	9
3. 1G-E and CGI/GeoSciML	. 10
3.1 Introduction to the GeoSciML model and its use within 1G-E	
3.2 Encoding the vocabulary in GeoSciML	. 14
3.2.1 MappedFeature	
4. Vocabulary	
4.1 Age	
4.2 Lithology	
4.2 Linology	
4.2.2 Sedimentary material	. 55
4.2.3 Composite genesis material	
4.2.4 Breccia and Tuffite	
4.3 Genesis	
4.3.1 EventEnviroment	
4.4 Metamorphic Terms	
4.4.1 Metamorphic Facies	
4.4.2 Metamorphic Grade	
4.4.3 Protolith Lithology	. 91
4.5 Contacts and Structures	
4.5.1 ContactType 4.5.2 FaultType	
4.6 Complex Rocks	
4.6.2 Olistostrome	
4.6.3 Turbidite 1	103
4.6.4 Ophiolitic mélange	
4.6.5 Tectonic mélange	
4.7 Orogenic Events	
5. Topographic Base: EuroGlobalMap	
6. Portrayal 1	109
7. Outlook	
8. Abbreviations	
10. Selected Standards	
11. References	
12. List of Tables	
ANNEX I : IUGS Stratigraphic Chart	
ANNEX II : IUGS Classification Schemas for Igneous Rocks	133

1. Introduction

1.1 Overview of OneGeology-Europe (1G-E)

OneGeology-Europe (1G-E) is making geological spatial data held by the geological surveys of Europe more easily discoverable and accessible via the internet.

Geological spatial data is, for example, essential for the prediction and mitigation of landslides, subsidence, earthquakes, flooding and pollution. These issues are global in nature and their profile has also been raised by the OneGeology global initiative for the International Year of Planet Earth 2008. 'Geology' is also a key dataset in the EC INSPIRE Directive (Annex II); and fundamental to the Annex III Themes of natural risk zones, energy and mineral resources.

Rich geological datasets exist in the European geological surveys, but for those outside the surveys they are difficult to discover, to obtain and to understand. In addition the datasets from different geological surveys may differ considerably with respect to their contents, description and geometry; and are therefore not interoperable.

Figure 1-1: Participating countries in OneGeology-Europe.

The 1G-E project is delivering a web-accessible, interoperable geological spatial dataset for the whole of onshore Europe at 1:1 million scale based on existing data (specifically composition and structure of the surface geology) held by the various European geological surveys. To enable the interoperability of the datasets, a European specification for basic geological map data, i.e. a common European vocabulary and portrayal, is being developed. This is the vital foundation for the harmonisation of the datasets.

For 1G-E each participating geological survey provides access to its data via the internet, i.e. it implements and hosts an interoperable web service, delivering their national geological

data in a semantically harmonised form. It is important to note that the original national databases, internal classifications and the vocabulary will remain unchanged. The 1G-E data model is implemented in GeoSciML which enables the sharing and exchange of the data within and beyond the geological community of Europe and globally. 1G-E therefore accelerates the development and deployment of this new international interchange standard for geological data.

1G-E is addressing the multilingual aspects of access through a multilingual discovery portal, so that awareness and interest is raised in the user and provider communities. Thus the project is moving geological knowledge closer to the end-user where it will have greater societal impact and ensure fuller exploitation of a key data resource gathered at huge public expense. Users of 1G-E will be able to discover, view and download geological data across Europe.

With this sharing of geological knowledge and data across Europe, 1G-E is facilitating re-use and addition of value by a wide spectrum of users in the public and private sectors; and identifying, documenting and disseminating strategies for the reduction of technical and business barriers to re-use. In addition, the project is providing examples of best practice in the delivery of digital geological spatial data to users, e.g. in the insurance, property, engineering, planning, mineral resource and environmental sectors.

Last but not least, 1G-E will be a test case for the geology theme and other themes of the implementation of the INSPIRE Directive. This may not only benefit the geology theme itself, but will also provide a template for other environmental data themes. Thus 1G-E will provide a reference base on which other valuable data products and services can be built. Therefore, 1G-E is ensuring that Europe plays a leading and pivotal role globally in the development of a geoscience spatial data infrastructure (SDI) – a major and significant contribution to INSPIRE.

1.2 The Relationship of the 1G-E Data Specification and INSPIRE

The EU Directive INSPIRE (2007/2/EC) came into force on 15th May 2007 with the aim of creating an Infrastructure for Spatial Information in Europe to provide a legislative framework that will enhance the accessibility of environmentally relevant data for politicians, economists, scientists and citizens. Ideally these data should be consistent and comparable, i.e. they should be interoperable and possibly even harmonised.

INSPIRE addresses 34 thematic geospatial data fields in Annex I, II and III of the Directive, and their metadata; to enable the cross-border interoperability of these data, Data Specifications are being set up for each of these themes - one being 'Geology'.

The work of the Work Package 3 (WP3) Data Specification team has already been recognised by the European Commission as providing a basis for the necessary, more detailed specification of the INSPIRE geology theme.

Thus, the 1G-E Geology Data Specification exceeds the limits of the 1G-E project. It may influence the description of geology significantly of each European country in future.

1.3 Purpose of the Data Specification

Each geological survey in Europe (and across the world) has, over two centuries, developed their own national way to map, describe and portray geological map units. In the last twenty years different ways of modelling and describing the digital data have also been developed.

The need for harmonised European geological data was previously recognised in 1881 at the second International Geological Congress in Bologna, where the first cross-boundary international mapping project of Europe started: The International Geological Map of Europe and the Mediterranean Regions at the scale 1:1 500 000. This substantial international endeavour was finally completed in 2000 (BGR and UNESCO) and was soon followed by the completion of the first harmonised digital spatial dataset of Europe - the 1:5 million scale International Geological Map of Europe (Asch, 2005) which was also published as a paper map. The data compilation of the geology for these two map projects was carried out and coordinated centrally at the Federal Institute for Geosciences and Natural Resources (BGR), Germany, and its predecessors under the umbrella of the Commission of the Geological Map of the World (CGMW) in cooperation with European geological survey organisations and universities. Unlike these projects, 1G-E is a distributed digital model that leaves the data with the responsible geological survey organisation, which provides access via the internet and the 1G-E Geoportal.

Geology does not change at political boundaries. However, there is a high probability that the same rock formations will be described differently, with regard to their lithology, age, or genesis, from one country to another. Furthermore, they will be portrayed with differing colours and symbols.

The European Commission and many users require consistent geological data, which does not change its attributes or portrayal as it crosses political boundaries. The EC INSPIRE Directive (see section 1.2), as well as the EC Water and Soil Directives, are addressing these issues. An international, general, generic description of the data - a Data Specification - is thus essential.

This document provides the 1G-E Data Specification. It lists, in hierarchical order, required terms and their definitions, for four relevant features: lithology, age, genesis and structures, each referenced to existing definitions and standards.

A major basis for this 1G-E Data Specification on geology is the GeoSciML scheme and the CGI/GeoSciML vocabularies; both developed by the Interoperability Working Group (IWG) of the IUGS Commission for the Management and Application of Geoscience Information (CGI).

The Operational Management Group of 1G-E has decided that this geological Data Specification should contribute to, and take forward, the single global (IUGS endorsed) scheme. This means that additions or amendments required by this European project will be proposed to the IWG. Any issues or conflicts arising will be resolved jointly by the IWG and the WP 3 team to ensure that a single unified global scheme results.

1.4 Development process of the 1G-E Data Specification

This document was iteratively developed by the WP 3 core team - experts from ten geological surveys who met at three workshops and corresponded frequently by email and telephone. In order to ensure consistency with the global GeoSciML scheme other experts from outside the core team were additionally consulted: John Laxton (WP 4), Agnès Tellez-Arenas (WP 6), Lars-Kristian Stølen (CGI Interoperability Working Group) and, in particular, Stephen Richard, chair of the CGI, IWG Concept Definition Task Group, who made a substantial contribution.

The 1G-E vocabulary is created to be consistent with the GeoSciML schema and feature types, and it uses subsets of the CGI/GeoSciML vocabularies (e.g. CGI Simple Lithology).

The CGI Simple Lithology vocabulary uses multiple, overlapping hierarchies and offers numerous detailed ways how to classify and identify a rock unit. For 1G-E, which addresses spatial data at a target scale of 1:1 million, this proved to be too complex and would make harmonisation significantly more difficult. WP3 selected an adequate subset of the CGI vocabulary, and submitted more than 120 new terms and concepts and several definitions to the CGI vocabulary in order to meet European requirements (fig. 1-2).

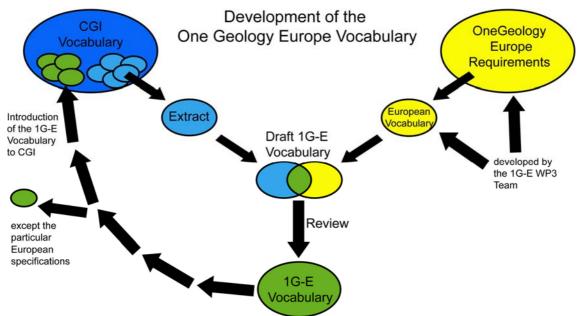


Fig. 1-2: Schema of the development of the 1G-E Data Specification.

The process of delivering an agreed set of terms involved many discussions and iterations between CGI experts and WP 3. The aim was that to build a set of terms for 1G-E that would be part of the global vocabulary. The dialogue was successful – with compromises necessary on both sides. There are only two additional elements in the 1G-E vocabulary that are not globally applicable and will be part of a specific European, rather than a global vocabulary: European terms for orogenic events and additional sub-divisions of the Pre-Cambrian at epoch level. The 1G-E Geology Data Specification thus contains a set of vocabularies that are tailored to describe the European geology appropriately.

A draft version of the vocabulary was developed by nine geological survey partners within the WP3 core team. It then underwent a thorough review process by the 20 project member surveys and eight partners, including two NGOs outside the project (the Commission of the Geological Map of The World and the IUGS Concept Definition Task Group).

The return rate on review comment was substantial: 532 comments were received. This demonstrates the (sometimes) passionate European interest in geological specifications, and accordingly that any pan-European specification will be highly contentious. The vocabulary is a sensitive issue as each European nation has a long held tradition of describing geology in accordance with their own national conventions. The vocabulary produced by WP3 thus represents a compromise between national schemes and is based on a pan-European cross-border approach to geological maps to produce geoscience data at 1:1 M scale consistent with a global vocabulary.

2. Definition of 'Geology' for 1G-E

'Geology' within 1G-E is defined in the Description of Work (DoW, [EC Contract document], p.25) as "composition (lithology/geochronology) and structure of the surface geology". Thus it is a mandatory requirement of all geological survey participants to describe and deliver the spatial data of the <u>surface</u> geology of their country, which is defined as follows:

<u>Surface geology</u> = geology that would be visible if the overlaying soil were removed, in other words: the Quaternary/superficial geology plus the exposed bedrock.

As several countries within the 1G-E participants traditionally place emphasis on displaying the bedrock geology of their country, WP 3 offers, in cooperation with WP 5 and 6, to include the <u>bedrock</u> geology as a separate layer. This option can only be used in addition to the surface geology and its use is optional. The Bedrock geology is defined in this context as follows:

<u>Bedrock geology</u> = pre-Quaternary geology.

3. 1G-E and CGI/GeoSciML

3.1 Introduction to the GeoSciML model and its use within 1G-E

This section is designed to provide an introduction to the part of the GeoSciML (GeoScience Markup Language) data model that is used in 1G-E. It is not intended to be a full explanation of the GeoSciML data model, but provides initial context and background so that users may understand how the vocabulary relates to it. Full documentation is available at http://www.geosciml.org/geosciml/2.0/doc/

and an encoding cookbook, covering the main features of the model, is available at http://www.geosciml.org/geosciml/2.0/cookbook/GeoSciML Data CookBook V2.pdf.

Specific and detailed GeoSciML technical information will be provided as a 1G-E online resource by Work Packages 4, 5 and 6. GeoSciML follows the encoding rules from ISO 19136 Annex E for GML 3.2.1 and is therefore a profile of GML (Geographic Markup Language). This means that it inherits some properties (attributes), in particular for the specification of geometry, from GML.

GeoSciML is a GML Application Schema that can be used to transfer information about geology. Its emphasis is on the "interpreted geology" that is conventionally portrayed on geological maps. It was created and is governed by the Commission for the Management and Application of Geoscience Information (CGI) to support interoperability of information served from geological surveys and other data providers.

For the unique and unambiguous identification of concepts and terms, URNs are being used within 1G-E, following the conventions used by the CGI and OGC. The URNs relating to specific concepts and terms are given in the 1G-E vocabulary (chapter 4), these URNs must be used to populate properties in 1G-E. More information on the structure of CGI URNs is given at

https://www.seegrid.csiro.au/twiki/bin/view/CGIModel/CGIIdentifierScheme.

Examples of GeoSciML code are provided as figures within the text.

Table 3-1: Overview over the Feature Types used in the 1G-E Data Specification.

GeoSciML	over the Feature Types used Properties of the	Description	URN used to	mandatory	optional
FeatureType	FeatureType used in	in section	populate the	-	-
used in 1G-E	1G-E		property		
MappedFeature	MappedFeatureObservati	3.2.1	compilation;	х	
	onMethod	0.0.4	Table 3-2		
	PositionalAccuracy	3.2.1	-	X	
	Shape	3.2.1	-	x	
	SamplingFrame	3.2.1	Surface map: EarthNaturalSurface;	x	
			Bedrock map: BedrockSurface		
GeologicFeature:	ID	3.2.2	-	х	
GeologicUnit	Name	3.2.2	-	х	
	Description	3.2.2	-		х
	ObservationMethod	3.2.2	Table 3-3	х	
	Purpose	3.2.2	typical_norm	х	
	GeologicUnitType	3.2.2	Table 3-4		
	GeologicUnitMorphology	3.2.2	Dike; Table 3-5	x for dikes	x
	CompositionPart: Lithology	3.1; 4.2	Tables 4-4, 4-5, 4-6 and 4-7	x	
	CompositionPart: GeologicUnitPartRole	3.1; 4.2	only_part or unspecified_part	x	
			_role; Table 4-3		
	CompositionPart: ProportionTerm	3.1; 4.2	all, predominant, subordinate; Table4-2	x	
GeologicFeature:	ID	3.2.2	-	x	
GeologicStructure	Name	3.2.2	-	x	
U	Description	3.2.2	-		x
	ObservationMethod	3.2.2	Table3-3	х	
	Purpose	3.2.2	typical_norm	х	
	ContactType	3.1; 4.5	Table 4-12	x for contacts	
	FaultType	3.1; 4.5	Table 4-13	x for faults	
GeologicEvent	PreferredAge	3.1; 4.1	Table 4-1	x	
0	GeologicHistory	3.1; 4.1	Table 4-1		x
	EventEnvironment	3.1; 4.3	Table 4-8	x for Quaternary	x
	EventProcess	3.1; 4.3	Table 4-9	x	
	OrogenicEvent	4.7	Table 4-14		х
MetamorphicDesc	MetamorphicFacies	3.1; 4.4	Table 4-10		X
ription	MetamorphicGrade	3.1; 4.4	Table 4-11		X
	ProtolithLithology	3.1; 4.4	Tables 4-4, 4-5, 4-6 and 4-7; Purpose: typical_norm; consolidationDegree: consolidation_not		x
			_specified		

MappedFeature and GeologicFeature

Central to GeoSciML are the two FeatureTypes: MappedFeature and GeologicFeature. Both are used within 1G-E and require explanation. GeologicFeature is used to describe real-world geological features, whose full geometric extent is unknown. A MappedFeature can be seen as a 'view' of a GeologicFeature; therefore any GeologicFeature can have several such MappedFeature views. On published geological maps different polygons depicting the same rock unit generally show the same symbolisation and have a single description in the map key. In GeoSciML each such polygon is a distinct MappedFeature, each one a different view of the same GeologicUnit. Other MappedFeature 'views' of the GeologicUnit might occur on geological maps of different scales or as volumes in a 3D model, for example. A MappedFeature is therefore mainly a holder of geometry whereas a GeologicFeature is a holder of descriptive properties.

GeologicUnit and GeologicStructure

The feature type GeologicFeature comprises two subtypes in the present implementation of GeoSciML: GeologicUnit and GeologicStructure.

GeologicUnit is used for the descriptions of rock bodies and consists of the following properties:

- CompositionPart, for the description of the lithology
- GeologicEvent, for the description of the age and events, that formed and/or modified the GeologicUnit
- MetamorphicDescription, for the description of metamorphic rocks

With GeologicStructure linear features like faults and contact structures are defined with the following properties:

- FaultType, for the description of faults
- ContactType, for the description of calderas, impact craters and glacial stationary lines
- GeologicEvent, for the description of the age and event, that formed and/or modified the GeologicStructure

CompositionPart

A GeologicUnit can be composed of one or more CompositionParts, i.e. lithologies which together form the GeologicUnit. With the FeatureType CompositionPart, the rock type/s (lithology property), the role of the lithologies (role property) and the proportion of the different lithologies (proportion property) forming the GeologicUnit can be defined.

GeologicEvent

In GeoSciML, ages and events are bound together in the FeatureType GeologicEvent. Any age must be the age of some event happening, for example the age during which deposition of a sedimentary rock took place; the age of intrusion or crystallisation of an igneous rock; the age of a particular period of folding; the protolith age of a metamorphic rock; or the age of the final phase of metamorphism.

The age can be recorded as a numerical value (e.g. 250Ma) or as a geochronological term (e.g. Early Triassic) and both number and term ages can be given as single values or as a range. Note that this age range is to record a time period and is distinct from an error range on a numerical age (which can also be recorded).

GeoSciML allows the recoding of two distinct properties for any GeologicFeature: PreferredAge and GeologicHistory. The PreferredAge property allows a single age or age range, to be given to a GeologicFeature. The GeologicHistory property allows a series of GeologicEvents that led to the formation of the unit to be recorded, e.g. a rock-forming deposition event followed by several metamorphic or deformation events.

MetamorphicDescription

GeoSciML offers the option of describing the metamorphism of a GeologicUnit beyond the lithological term with the property MetamorphicDescription. For 1G-E this property includes the estimated intensity of metamorphism (MetamorphicGrade), the characteristic metamorphic mineral assemblages (MetamorphicFacies) and protolith material (ProtolithLithology), if known.

3.2 Encoding the vocabulary in GeoSciML

In this section the encoding of those properties that are required for every MappedFeature and GeologicFeature in the dataset, and which are more or less fixed, are described. The encoding of the properties that can be defined using the 1G-E vocabulary are explained directly in the vocabulary chapter (see chapter 4).

Note, that unless it is specifically stated that they are optional, all the properties described in the following sections are mandatory to use for 1G-E.

3.2.1 MappedFeature

The FeatureType MappedFeature is used to define the geometry of the geological units or structures of the dataset. In the following the mandatory attributes that need to be defined for each MappedFeature that appears in the dataset, are explained.

MappedFeatureObservationMethod

The ObservationMethod property of MappedFeature enables the reconstruction of the source or sources of the geometry of the MappedFeatures. Note that this is distinct from the ObservationMethod property of GeologicFeature which enables the reconstruction of the source or sources of the described properties of the GeologicFeatures. For 1G-E the MappedFeatureObservationMethod property should always be set to 'compilation' (tab. 3-2, fig. 3-2).

1G-E	1G-E Term	1G-E	Definition	Source	CGI_URN	Complete URN
ID		Broader				
		Concept				
mfom	Compilation		Mapped feature geometry derived from one or more published or unpublished data sources, involving some interpretation or generalisation by the compiler; not an exact digital			urn:cgi:classifier:CGI:Mapped FeatureObservationMethod:2 01001:compilation
			reproduction of the sources.			

Table 3-2: The 1G-E term to describe the MappedFeatureObservationMethod

PositionalAccuracy

The property PositionalAccuracy is designed to provide an indication of spatial resolution. For 1G-E it should be provided as a numerical value in metres to indicate the distance from the given geometric position, e.g. a GeologicFeature. The value is centred on the geometric position; a PositionalAccuracy value of 500 m therefore means +/- 500 m about the geometry. It is recommended to give all MappedFeatures the same, approximate, value; for 1G-E this value should generally be around 250 m (figure 3-2).

Shape

The Shape property holds the geometry of the MappedFeature as a series of coordinate pairs. The geometry can be of any appropriate GML geometric type; for a GeologicUnit this will typically be a Polygon with 'LinearRing' structures defining the OuterBoundary and, if necessary, InnerBoundary (e.g. for holes); for a GeologicStructure this will typically be a 'LineString' (fig. 3-1).

Figure 3-1: Example of the encoding of the Shape porperty of MappedFeature.

SamplingFrame

The SamplingFrame property indicates the spatial reference frame within which the features have been observed. For 1G-E this should be set to 'EarthNaturalSurface' for the surface map and 'BedrockSurface' for the bedrock map (fig. 3-2).

<0	gsml:MappedFeature>
1	<gsml:observationmethod></gsml:observationmethod>
l	<gsnl:cgi_termvalue></gsnl:cgi_termvalue>
l	<sml:value codespace="http://www.cgi-iugs.org/uri">urn:cgi:classifier:CGl:MappedFeatureObservationMethod:201001:compilation </sml:value>
1	
l	
l	<gsml:positionalaccuracy></gsml:positionalaccuracy>
l	<gsmt:cgi_numericvalue></gsmt:cgi_numericvalue>
l	<pre><gsmt:principalvalue uom="urn:ogc:def:uom:UCUM:m">250</gsmt:principalvalue></pre>
l	
1	
l	<gsml:samplingframe xlink:href="urn:cgi:feature:CGI:BedrockSurface"></gsml:samplingframe>
<u> </u>	

Figure 3-2: Example of the encoding of the MappedFeature properties ObservationMethod, PositionalAccuracy and SamplingFrame.

3.2.2 GeologicFeature

For 1G-E the two subtypes GeologicUnit and GeologicStructure of the FeatureType GeologicFeature are used for the description of the geology. In the following, the mandatory attributes that need to be defined for each GeologicFeature that appears in the data set in 1G-E, are explained.

ID

For 1G-E each GeologicUnit and each GeologicStructure should be given a unique identifier (ID). This is for use in application processing rather than for information exchange, so the ID value can be anything as long as it is unique.

Name

Normally a GeologicUnit on a map would have a name, typically recorded in a stratigraphic lexicon. In 1G-E there has been no attempt to harmonise lithostratigraphy by creating a single integrated stratigraphic lexicon for Europe. GeologicUnits will be portrayed in 1G-E web services on the basis of their age or lithology rather than lithostratigraphy. There is therefore no requirement to name GeologicUnits and use of the Name property is optional.

However, you may wish to use the Name property of GeologicUnit to record the name of the unit used in your own stratigraphic lexicon which would therefore provide a link to the 'full' original description of the unit. No retrieval or symbolisation based on this name will be implemented in 1G-E but such a link could be implemented in the future if required.

The same applies for GeologicStructures: some might have a specific name that you wish to define to provide a link to your original description of the structure. The use of the Name property for GeologicStructures is also optional.

If you wish to name a GeologicUnit or GeologicStructure you should give it a URN following the CGI pattern described at

https://www.seegrid.csiro.au/twiki/bin/view/CGIModel/CGIIdentifierScheme.

An example of this is (from the BGS Stratigraphic lexicon): urn:cgi:classifier:BGS:StratigraphicLexicon:MMG;

where: BGS = Registered CGI Party responsible for the resource; StratigraphicLexicon = the name of the vocabulary within which the concept being referenced is held; MMG = the identifier for a specific concept, in this case the 'Mercia Mudstone Group'.

A full list of registered CGI parties, who are able to register resources, is available at https://www.seegrid.csiro.au/twiki/bin/view/CGIModel/CGIPartyRegister.

If your organisation is not on this list you can apply to have it added following the instructions on this web page. You can then register your resources (e.g. a classification scheme) in the CGI Authority Register following the procedures given here:

https://www.seegrid.csiro.au/twiki/bin/view/CGIModel/CGIAuthorityRegister

Note that the resource referenced does not need to be available in digital form; the URN is simply providing an identifier, not an address.

It is possible to give multiple names to a GeologicUnit or GeologicStructure. The example shown in figure 3-3 demonstrates that the name can also be presented in natural language in addition to the name giving the URN.

Description

In addition to the Name property it is possible to provide a free-text description of the GeologicUnit/GeologicStructure. The use of this Description property is optional and will not be used for retrieval. However, it can provide useful information about the GeologicUnit or GeologicStructure that is not given elsewhere in the 1G-E specification (fig. 3-3).

Observation Method

The ObservationMethod property of GeologicUnit/GeologicStructure enables the reconstruction of the source or sources of the described properties of the GeologicFeatures. Note that this is distinct from the ObservationMethod property of MappedFeature which enables the reconstruction of the source or sources of the geometry of the GeologicFeatures.

For 1G-E the ObservationMethod property should be set to either

'data_from_single_published_description' (where the property values are derived from a single source document) or 'synthesis_of_multiple_published_descriptions' (where the property values are derived from multiple source documents; see fig. 3-3, tab. 3-3).

1G-E	1G-ETerm	1G-E	Definition	Source	CGI_URN	Complete URN
ID		Broader				
		Concept				
fom1	Data from		Data are extracted from a	CGI/GeoSciML.	data_from_si	urn:cgi:classifier:CGI:Feature
	single		publised description of the		ngle_publishe	ObservationMethod:201001:
	published		feature.		d_description	data_from_single_published_
	description					description
fom2	Synthesis		Data are the result of	CGI/GeoSciML.	synthesis_of	urn:cgi:classifier:CGI:Feature
	of multiple		synthesis from multiple		_multiple_publ	ObservationMethod:201001:
	published		published descriptions.		ished_descrip	synthesis_of_multiple_publis
	descriptions				tions	hed_descriptions

Table 3-3: The 1G-E terms to describe the ObservationMethod of GeologicFeatures.

Purpose

The Purpose property is used to state if the GeologicUnit/GeologicStructure description is of a particular occurrence or 'instance', such as given on a field map, or a typical or 'normative' description as used in a stratigraphic lexicon. On published maps the descriptions are generalised and given in the map key, and possibly in a related stratigraphic lexicon. For 1G-E the Purpose property should be set to 'typical_norm', as shown in figure 3-3.

1	<gsmt specification=""></gsmt>
1	<gsmt:geologicunit gmt:id="MMG_1"></gsmt:geologicunit>
	«gmt.description»Dominantly red, less commonly green-grey, mudstones and subordinate sittstones with thick halite-bearing units in some basinal areas. Thin beds of gypsum/anhydrite
wic	despread; sandstones are also present
	<gmt.name.codespace="http: uri"="" www.cgi-lugs.org="">urn:cgi:classifier:BGS:StratigraphicLexicon:MMG</gmt.name.codespace="http:>
	<gml:name codespace="urn:cgi:classifierScheme:BGS:StratigraphicLexicon">MERCIA MUDSTONE GROUP</gml:name>
1	<gsml:observationmethod></gsml:observationmethod>
	<gsml:cgi_termvalue></gsml:cgi_termvalue>
	<gsmt_value codespace="http://www.cgi-iugs.org/uri">urr.cgi.classifier:CGI:FeatureObservationMethod:201001:synthesis_of_multiple_published_descriptions </gsmt_value>
	count or more the more than a lower that more an

Figure 3-3: Example of the encoding of the GeologicUnit properties ID, Name, Description and Purpose.

.......

GeologicUnitType

Each GeologicUnit must be given a GeologicUnitType value drawn from table 3-4.The GeologicUnitType refers to the definition and/or delimitation of the GeologicUnit, not to its portrayal in 1G-E. Most maps contributing to 1G-E are likely to have a combination of Lithostratigraphic Units and Lithodemic Units. If these cannot be practically separated for encoding, they can all be grouped as Lithologic Units.

1G-E ID	1G-E Term	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
g	Geologic Unit		Type of geologic unit is unknow n, unspecified, irrelevant, or some type not included in the vocabulary. Type makes no implication for required properties or cardinalities. This is the root concept for the type hierarchy.	CGI/GeoSciML	geologic_ unit	urn:cgi:classifier:CGl:GeologicUnit Type:200811:geologic_unit
g1	Lithologic Unit	geologic_ unit	Geologic unit defined by lithology independent of relationships to other units. Denotes a 'kind' of rock body characterized by lithology, e.g. basaltic rocks.	CGV GeoSciML.	lithologic_ unit	urn:cgi:classifier:CGl:GeologicUnit Type:200811:lithologic_unit
g1.1	Lithostrati graphic Unit	lithologic_ unit	Geologic unit defined on the basis of observable and distinctive lithologic properties or combination of lithologic properties and stratigraphic relationships. Denotes a particular body of	Salvador, 1994.	lithostratig raphic_uni t	urn:cgi:classifier:CGI:GeologicUnit Type:200811:lithostratigraphic_unit
g1.2	Lithodemic Unit	lithologic_ unit	Lithostratigraphic unit that lacks stratification.	NACSN, 1983 ¹ .	lithodemic _unit	urn:cgi:classifier:CGI:GeologicUnit Type:200811:lithodemic_unit
4			<u>.</u>			

Table 3-4: The 1G-E vocabulary to describe the GeologicUnitType.

¹ for explanation please see chapter 8: Abbreviations.

GeologicUnitMorphology

The property geologicUnitMorphology only applies, if it is necessary to describe a GeologicUnit as a dike. In this case, the geologicUnitMorphology should be set to 'dike' (tab. 3-5).

1G-E	1G-E	1G-E	Definition	Source	CGI_URN	Complete URN
ID	Term	Broader				
		Concept				
gum	Three dimensional		Any three dimensional body.	CGI/GeoSciML.	ensional_	urn:cgi:classifier:CGI:Geologic UnitMorphology:201001:three
	body				body	_dimensional_body
gum1	Geologic body	three_ dimensiona l_body	A three dimensional body defined based on geometric shape, w ith some geologic connotation or denotation.	CGI/GeoSciML.	geologic_ body	urn:cgi:classifier:CGI:Geologic UnitMorphology:201001:geolo gic_body
gum1.1	Dike	geologic _body	A generally sheet-like intrusive rock body that cuts across bedding or foliation in the host rock, or intrudes massive host rock.	Neuendorf et al., 2005.	dike	urn:cgi:classifier:CGI:Geologic UnitMorphology:201001:dike

Table 3-5: The 1G-E vocabulary to describe the GeologicUnitMorphology.

4. Vocabulary

The vocabulary from 1G-E includes 524 terms and Uniform Resource Names (URN) to describe the age, lithology, genesis and metamorphism of rocks, plus their contacts and fault structures.

However, the 1G-E vocabulary is not a simple list of geological terms. It might be regarded as a set of classification tables and dictionaries, since each vocabulary table has its own hierarchy and all the terms are defined with a description, the source, their broader concept and sometimes a synonym or related concept.

Each vocabulary table has the same format providing similar information for each term listed in the same seven columns. The first column displays the '1G-E ID', an alphanumerical identifier that stores the hierarchy of the terms in that vocabulary. The next column gives the '1G-E Term', the preferred name or label for the described concept. The '1G-E Broader Concept' are parents of terms in a concept hierarchy tree. The 'Definition' column gives an explanation of the intended meaning of a term, including any clarification of what is or is not included within the meaning of this term. The definition establishes the identity of a concept by distinguishing it from other terms. In addition it shows terms that are equivalent to the defined term, i.e. synonyms, as well as terms that are commonly associated with it, but are not exactly equivalent; the latter are labelled with: 'SeeAlso'. For some terms, 'Related Concepts' are given. These are vocabulary concepts associated with the defined term and may be a necessary component in the definition of this term, but are neither equivalent nor hierarchical, e.g. the term 'rock' forms a necessary part of the definition of petrology. The 'Source' column, gives the origin of the definition provided. The last two columns 'CGI URN' and 'Complete URN' list the Uniform Resource Names for each term; the longer format including a standard prefix link to the particular vocabulary table in the name. The URNs are used to encode the vocabulary in GeoSciML.

Fifteen vocabularies have been defined:

1G-E Vocabulary	Described in Section	Listed in Table
Lithology	4.2	4-5: Igneous Material
(including Igneous Material,		4-6: Sedimentary Material
Sedimentary Material, Composite		4-7: Composite Genesis
Genesis Material, Breccia and Tuffite)		Material
		4-8: Breccia and Tuffite
Age	4.1	4-2
EventEnvironment	4.3	4-9
EventProcess	4.3	4-10
OrogenicEvent	4.7	4-15
MetamorphicFacies	4.4	4-11
MetamorphicGrade	4.4	4-12
GeologicUnitType	3.2	3-4
GeologicUnitMorphology	3.2	3-5
GeologicUnitPartRole	4.2	4-4
ProportionTerms	4.3	4-3
ContactType	4.5	4-13
FaultType	4.5	4-14
FeatureObservationMethod	3.2	3-3
MappedFeatureObservationMethod	3.1	3-2

Table 4-1: Overview over the 1G-E vocabularies.

The following sections present the vocabulary and explain its use in 1G-E, and inGeoSciML. Note, that unless it is specifically stated that they are optional all the properties described in the following sections are mandatory to use for 1G-E.

4.1 Age

The only global internationally agreed standard to describe the age of rocks is the IUGS-ICS International Stratigraphic Chart (Version 2009, see Annex I). This has been adopted as mandatory by 1G-E, with the following modifications:

- 1. the chronostratigraphic adjectives "Lower" and "Upper" in the series of the International Stratigraphic Chart are combined with the geochronological epoch adjectives "Early" and "Late", respectively, e.g. Upper/Late Jurassic (see table 4-2).
- 2. the International Stratigraphic Chart has been complemented with 27 new Precambrian Epochs (marked with an asterisk in table 4-2). The reason for this is that the ICS Chart does not subdivide the Precambrian enough for 1G-E. The Fennoscandian Shield forms a large part of Europe where most rocks are of Precambrian age.

GeoSciML offers two options for defining the age of a GeologicUnit: PreferredAge and GeologicHistory. For PreferredAge it is only possible to define one age range; GeologicHistory provides the option of recording a series of GeologicEvents that led to the formation of the GeologicUnit, which is likely to be particularly useful for metamorphic rocks. In both options one can describe lower and upper ages of GeologicEvents (EventAge), as well as the process and the environment linked to the GeologicEvent (EventEnvironment and EventProcess, see section 3.4 Genesis).

For 1G-E the PreferredAge is the age of the formation, i.e. the genesis of the GeologicUnit. It is mandatory for each GeologicUnit to provide a term range giving the URNs for the lower (older) age and the upper (younger) age. The aim should be to record ages to the highest resolution possible. If both the lower and upper age falls within the same geochronological unit, then both fields should be populated with the same term. The portrayal in the map service will be based on the lower age (fig. 4-1).

Figure 4-1: Example of the encoding of PreferredAge.

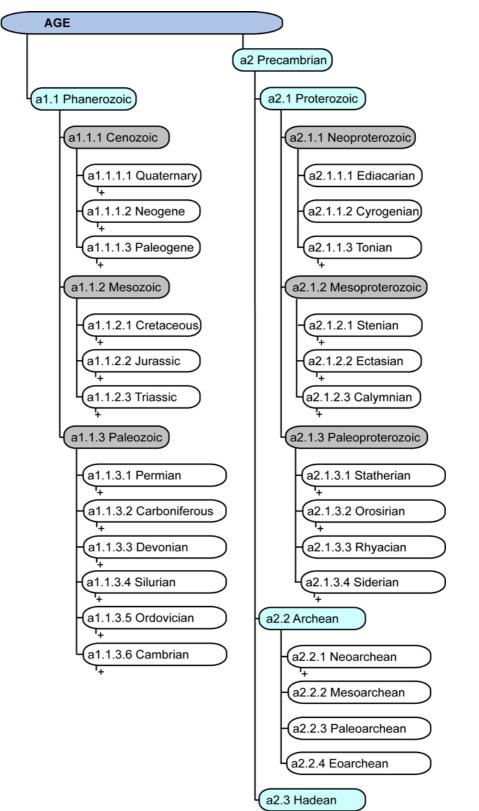

The option GeologicHistory is not mandatory for 1G-E. It can be used either to provide a detailed history of events that formed the GeologicUnit or it can be used to provide a numerical age to refine the geochronological unit based age given in PreferredAge, in which case the GeologicHistory may contain only one GeologicEvent. Please note that to record an age of e.g. 250 Million years, the 'units of measure property (uom)' should be set to 'Ma' and the age recorded as a negative number ('-250') (fig. 4-2).

Table 4-2 shows the 1G-E vocabulary for 'Age', i.e. the geochronological terms/units that should be used for the age description of the GeologicUnits. Figure 4-3 highlights the corresponding hierarchy.

Figure 4-2: Example of the encoding of GeologicHistory to provide a numerical age. The coding of the GeologicUnitType property is also shown.

Figure 4-3: Hierarchical overview representation of the 1G-E vocabulary for the description of the age of a GeologicUnit. For clarity concepts are indicated up to Epoch level only.

1G-EID	1G-E Term	1G-E Broader Concept	Definition (Ma)	Source	CGI_URN	Complete URN
a1.1	Phanerozoic		542 ±1 - 0	IUGS ICS Stratigraphic	Phanerozoic	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Phanerozoic
a1.1.1	Cenozoic	Phanerozoic	65.5 ±0.3 - 0	IUGS ICS Stratigraphic	Cenozoic	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Cenozoic
a1.1.1.1	Quaternary	Cenozoic	2.588 - 0	IUGS ICS Stratigraphic	Quaternary	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Quaternary
a1.1.1.1.1	Holocene	Quaternary	0.0117 - 0	IUGS ICS Stratigraphic	Holocene	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Holocene
a1.1.1.1.2	Pleistocene	Quaternary	2.588 - 0.0117	IUGS ICS Stratigraphic	Pleistocene	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Pleistocene
a1.1.1.1.2.1	Late/Upper	Pleistocene	0.126 - 0.0117	IUGS ICS Stratigraphic	UpperPleistocene	urn:cgi:classifier:ICS:StratChart:200908:
	Pleistocene			Chart, 2009.		UpperPleistocene
a1.1.1.1.2.2	lonian	Pleistocene	0.781 - 0.126	IUGS ICS Stratigraphic	lonian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		lonian
a1.1.1.1.2.3	Calabrian	Pleistocene	1.806 - 0.781	IUGS ICS Stratigraphic	Calabrian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Calabrian
a1.1.1.1.2.4	Gelasian	Pleistocene	2.588 - 1.806	IUGS ICS Stratigraphic	Gelasian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Gelasian
a1.1.1.2	Neogene	Cenozoic	23.03 - 2.588	IUGS ICS Stratigraphic	Neogene	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Neogene
a1.1.1.2.1	Pliocene	Neogene	5.332 - 2.588	IUGS ICS Stratigraphic	Pliocene	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Pliocene
a1.1.1.2.1.1	Piacenzian	Pliocene	3.6 - 2.588	IUGS ICS Stratigraphic	Piacenzian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Piacenzian
a1.1.1.2.1.2	Zanclean	Pliocene	5.332 - 3.6	IUGS ICS Stratigraphic	Zanclean	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Zanclean
a1.1.1.2.2	Miocene	Neogene	23.03 - 5.332	IUGS ICS Stratigraphic	Miocene	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Miocene
a1.1.1.2.2.1	Messinian	Miocene	7.246 - 5.332	IUGS ICS Stratigraphic	Messinian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Messinian
a1.1.1.2.2.2	Tortonian	Miocene	11.608 - 7.246	IUGS ICS Stratigraphic	Tortonian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Tortonian

Toble 1 0. The 10 Fuesebule	for the decomption of the of	a of a Coolegial Init (continued)
	v tor the description of the ac	e of a GeologicUnit (continued).

1G-EID	1G-E Term	1G-E Broader	Definition (Ma)	Source	CGI_URN	Complete URN
		Concept				
a1.1.1.2.2.3	Serravallian	Miocene	13.82 - 11.608	IUGS ICS Stratigraphic	Serravallian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Serravallian
a1.1.1.2.2.4	Langhian	Miocene	15.97 - 13.82	IUGS ICS Stratigraphic	Langhian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Langhian
a1.1.1.2.2.5	Burdigalian	Miocene	20.43 - 15.97	IUGS ICS Stratigraphic	Burdigalian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Burdigalian
a1.1.1.2.2.6	Aquitanian	Miocene	23.03 - 20.43	IUGS ICS Stratigraphic	Aquitanian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Aquitanian
a1.1.1.3	Paleogene	Cenozoic	65.5 ±0.3 - 23.03	IUGS ICS Stratigraphic	Paleogene	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Paleogene
a1.1.1.3.1	Oligocene	Cenozoic	33.9 ±0.1 - 23.03	IUGS ICS Stratigraphic	Oligocene	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Oligocene
a1.1.1.3.1.1	Chattian	Oligocene	28.4 ±0.1- 23.03	IUGS ICS Stratigraphic	Chattian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Chattian
a1.1.1.3.1.2	Rupelian	Oligocene	33.9 ±0.1 - 28.4 ±0.1	IUGS ICS Stratigraphic	Rupelian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Rupelian
a1.1.1.3.2	Eocene	Cenozoic	55.8 ±0.2 - 33.9 ±0.1	IUGS ICS Stratigraphic	Eocene	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Eocene
a1.1.1.3.2.1	Priabonian	Eocene	37.2 ±0.1 - 33.9 ±0.1	IUGS ICS Stratigraphic	Priabonian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Priabonian
a1.1.1.3.2.2	Bartonian	Eocene	40.4 ±0.2 - 37.2 ±0.1	IUGS ICS Stratigraphic	Bartonian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Bartonian
a1.1.1.3.2.3	Lutetian	Eocene	48.6 ±0.2 - 40.4 ±0.2	IUGS ICS Stratigraphic	Lutetian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Lutetian
a1.1.1.3.2.4	Ypresian	Eocene	55.8 ±0.2 - 48.6 ±0.2	IUGS ICS Stratigraphic	Ypresian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Ypresian
a1.1.1.3.3	Paleocene	Paleogene	65.5 ±0.3 - 55.8 ±0.2	IUGS ICS Stratigraphic	Paleocene	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Paleocene
a1.1.1.3.3.1	Thanetian	Paleocene	58.7 ±0.2 - 55.8 ±0.2	IUGS ICS Stratigraphic	Thanetian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Thanetian
a1.1.1.3.3.2	Selandian	Paleocene	61.1 - 58.7 ±0.2	IUGS ICS Stratigraphic	Selandian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Selandian
a1.1.1.3.3.3	Danian	Paleocene	65.5 ±0.3 - 61.1	IUGS ICS Stratigraphic	Danian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Danian

1G-EID	1G-ETerm	1G-E Broader	Definition (Ma)	Source	CGI_URN	Complete URN
		Concept				
a1.1.2	Mesozoic	Phanerozoic	251 ±0.4 - 65.5 ±0.3	IUGS ICS Stratigraphic	Mesozoic	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Mesozoic
a1.1.2.1	Cretaceous	Mesozoic	145.5 ±4 - 65.5 ±0.3	IUGS ICS Stratigraphic	Cretaceous	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Cretaceous
a1.1.2.1.1	Late/Upper	Cretaceous	99.6 ±0.9 - 65.5 ±0.3	IUGS ICS Stratigraphic	UpperCretaceous	urn:cgi:classifier:ICS:StratChart:200908:
	Cretaceous			Chart, 2009.		UpperCretaceous
a1.1.2.1.1.1	Maastrichtian	UpperCretaceous	70.6 ±0.6 - 65.5 ±0.3	IUGS ICS Stratigraphic	Maastrichtian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Maastrichtian
a1.1.2.1.1.2	Campanian	UpperCretaceous	83.5 ±0.7 - 70.6 ±0.6	IUGS ICS Stratigraphic	Campanian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Campanian
a1.1.2.1.1.3	Santonian	UpperCretaceous	85.8 ±0.7 - 83.5 ±0.7	IUGS ICS Stratigraphic	Santonian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Santonian
a1.1.2.1.1.4	Coniacian	UpperCretaceous	88.6 - 85.8 ±0.7	IUGS ICS Stratigraphic	Coniacian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Coniacian
a1.1.2.1.1.5	Turonian	UpperCretaceous	93.6 ±0.8 - 88.6	IUGS ICS Stratigraphic	Turonian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Turonian
a1.1.2.1.1.6	Cenomanian	UpperCretaceous	99.6 ±0.9 - 93.6 ±0.8	IUGS ICS Stratigraphic	Cenomanian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Cenomanian
a1.1.2.1.2	Early/Low er	Cretaceous	145.5 ±4 - 99.6 ±0.9	IUGS ICS Stratigraphic	Low erCretaceous	urn:cgi:classifier:ICS:StratChart:200908:
	Cretaceous			Chart, 2009.		Low erCretaceous
a1.1.2.1.2.1	Albian	Low erCretaceous	112 ±1 - 99.6 ±0.9	IUGS ICS Stratigraphic	Albian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Albian
a1.1.2.1.2.2	Aptian	Low erCretaceous	125 ±1 - 112 ±1	IUGS ICS Stratigraphic	Aptian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Aptian
a1.1.2.1.2.3	Barremian	Low erCretaceous	130 ±1.5 - 125 ±1	IUGS ICS Stratigraphic	Barremian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Barremian
a1.1.2.1.2.4	Hauterivian	Low erCretaceous	133.9 - 130 ±1.5	IUGS ICS Stratigraphic	Hauterivian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Hauterivian
a1.1.2.1.2.5	Valanginian	Low erCretaceous	140.2 ±3 - 133.9	IUGS ICS Stratigraphic	Valanginian	urn:cgi:classifier:ICS:StratChart:200908:
	- 5 -			Chart, 2009.		Valanginian
a1.1.2.1.2.6	Berriasian	Low erCretaceous	145.5 ±4 - 140.2 ±3	IUGS ICS Stratigraphic	Berriasian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Berriasian

1G-EID	1G-ETerm	1G-E Broader	Definition (Ma)	Source	CGI_URN	Complete URN
		Concept				
a1.1.2.2	Jurassic	Mesozoic	199.6 ±0.6 - 145.5 ±4	IUGS ICS Stratigraphic	Jurassic	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Jurassic
a1.1.2.2.1	Late/Upper Jurassic	Jurassic	161.2 ±4 - 145.5 ±4	IUGS ICS Stratigraphic	UpperJurassic	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		UpperJurassic
a1.1.2.2.1.1	Tithonian	UpperJurassic	150.8 ±4 - 145.5 ±4	IUGS ICS Stratigraphic	Tithonian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Tithonian
a1.1.2.2.1.2	Kimmeridgian	UpperJurassic	155.6 - 150.8 ±4	IUGS ICS Stratigraphic	Kimmeridgian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Kimmeridgian
a1.1.2.2.1.3	Oxfordian	UpperJurassic	161.2 ±4 - 155.6	IUGS ICS Stratigraphic	Oxfordian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Oxfordian
a1.1.2.2.2	Middle Jurassic	Jurassic	175.6 ±2 - 161.2 ±4	IUGS ICS Stratigraphic	MiddleJurassic	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		MiddleJurassic
a1.1.2.2.2.1	Callovian	MiddleJurassic	164.7 ±4 - 161.2 ±4	IUGS ICS Stratigraphic	Callovian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Callovian
a1.1.2.2.2.2	Bathonian	MiddleJurassic	167.7 ±3.5 - 164.7 ±4	IUGS ICS Stratigraphic	Bathonian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Bathonian
a1.1.2.2.2.3	Bajocian	MiddleJurassic	171.6 ±3 - 167.7 ±3.5	IUGS ICS Stratigraphic	Bajocian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Bajocian
a1.1.2.2.2.4	Aalenian	MiddleJurassic	175.6 ±2 - 171.6 ±3	IUGS ICS Stratigraphic	Aalenian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Aalenian
a1.1.2.2.3	Early/Low er Jurassic	Jurassic	199.6 ±0.6 - 175.6 ±2	IUGS ICS Stratigraphic	Low erJurassic	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Low erJurassic
a1.1.2.2.3.1	Toarcian	Low erJurassic	183 ±1.5 - 175.6 ±2	IUGS ICS Stratigraphic	Toarcian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Toarcian
a1.1.2.2.3.2	Pliensbachian	Low erJurassic	189.6 ±1.5 - 183 ±1.5	IUGS ICS Stratigraphic	Pliensbachian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Pliensbachian
a1.1.2.2.3.3	Sinemurian	Low erJurassic	196.5 ±1 - 189.6 ±1.5	IUGS ICS Stratigraphic	Sinemurian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Sinemurian
a1.1.2.2.3.4	Hettangian	Low erJurassic	199.6 ±0.6 - 196.5 ±1	IUGS ICS Stratigraphic	Hettangian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Hettangian

chart. 2009.Triassica1.1.2.3.1LaterUpper Triassic228.7 - 199.6 ± 0.6LGS ICS Stratigraphic Chart. 2009.Upper Triassicumccgiclassifier:ICS:StratChart.20090. Upper Triassica1.1.2.3.1.1RhaetlanUpper Triassic203.6 ± 1.5 - 199.6 ± 0.6LGS Stratigraphic Chart. 2009.Rhaetlanumccgiclassifier:ICS:StratChart.20090. Noriana1.1.2.3.1.2NorianUpper Triassic216.5 ± 2 - 203.6 ± 1.5LGS ICS Stratigraphic Chart. 2009.Norianumccgiclassifier:ICS:StratChart.20090. Noriana1.1.2.3.1.2NorianUpper Triassic228.7 - 216.5 ± 2LGS ICS Stratigraphic Chart. 2009.Carnianumccgiclassifier:ICS:StratChart.20090. Noriana1.1.2.3.1.2CarnianUpper Triassic228.7 - 216.5 ± 2LGS ICS Stratigraphic Chart. 2009.Carnianumccgiclassifier:ICS:StratChart.20090. Mddle Triassica1.1.2.3.2.1LadinianMddle Triassic237 ± 2 - 228.7LGS ICS Stratigraphic Chart. 2009.Mddle Triassicumccgiclassifier:ICS:StratChart.20090. Mddle Triassica1.1.2.3.2.2AnisianMddle Triassic237 ± 2 - 228.7LGS ICS Stratigraphic Chart. 2009.Ladinianumccgiclassifier:ICS:StratChart.20090. Mddle Triassica1.1.2.3.3Early/Low er TriassicTriassic251 ± 0.4 - 245.9LGS ICS Stratigraphic Chart. 2009.Anisianumccgiclassifier:ICS:StratChart.20090. Chart. 2009.a1.1.2.3.1.1OlenekianLow er Triassic251 ± 0.4 - 245.9LGS ICS Stratigraphic Chart. 2009.Olenekianumccgiclassifier:ICS:StratChart.20090. Char	1G-EID	1G-E Term	1G-E Broader	Definition (Ma)	Source	CGI_URN	Complete URN
InstructureChart. 2009.Triassica1.1.2.3.1Late/Upper Triassic228.7 - 199.6 ± 0.6UGS ICS StratigraphicUpper Triassicurn:cgicclassifier:ICS:StratChart.20090a1.1.2.3.1.1RhaetianUpper Triassic203.6 ± 1.5 - 199.6 ± 0.6IUGS ICS StratigraphicRhaetianurn:cgicclassifier:ICS:StratChart.20090a1.1.2.3.1.2NorianUpper Triassic216.5 ± 2 - 203.6 ± 1.5IUGS ICS StratigraphicRhaetianurn:cgicclassifier:ICS:StratChart.20090a1.1.2.3.1.3CarnianUpper Triassic228.7 - 216.5 ± 2IUGS ICS StratigraphicChart. 2009.Noriana1.1.2.3.1.3CarnianUpper Triassic228.7 - 216.5 ± 2IUGS ICS StratigraphicChart. 2009.Urn:cgicclassifier:ICS:StratChart.20090.a1.1.2.3.2.1Middle TriassicTriassic245.9 - 228.7IUGS ICS StratigraphicChart. 2009.Urn:cgicclassifier:ICS:StratChart.20090.a1.1.2.3.2.2AnisianMiddle Triassic237 ± 2 - 228.7IUGS ICS StratigraphicChart. 2009.Urn:cgicclassifier:ICS:StratChart.20090.a1.1.2.3.3.1IcdinianMiddle Triassic245.9 - 27.7 ±IUGS ICS StratigraphicChart. 2009.Ladinianurn:cgicclassifier:ICS:StratChart.20090.a1.1.2.3.3.1OlenekianIriassic251 ± 0.4 - 245.9UGS ICS StratigraphicChart. 2009.Uce ITriassicurn:cgicclassifier:ICS:StratChart.20090.a1.1.2.3.3.2InduanLow erTriassic251 ± 0.4 - 245.9UGS ICS StratigraphicChart. 2009.Olenekiana1.1.3.3.3.2InduanLow erTrias			Concept				
a1.1.2.3.1 Late/Upper Triassic Triassic 228.7 - 199.6 ± 0.6 UGS Stratigraphic Charl, 2009. Upper Triassic Umr cgiclassifier:ICS:StratChart.20090. a1.1.2.3.1.1 Rhaetian Upper Triassic 203.6 ± 1.5 - 199.6 ± 0.6 IUGS ICS Stratigraphic Charl, 2009. Rhaetian umr cgiclassifier:ICS:StratChart.20090. a1.1.2.3.1.2 Norian Upper Triassic 216.5 ± 2 - 203.6 ± 1.5 IUGS ICS Stratigraphic Chart, 2009. Norian umr cgiclassifier:ICS:StratChart.20090. a1.1.2.3.1.3 Carnian Upper Triassic 228.7 - 216.5 ± 2 IUGS ICS Stratigraphic Chart, 2009. Carnian umr cgiclassifier:ICS:StratChart.20090. a1.1.2.3.2.1 Ladinian Itassic 237 ± 2 - 228.7 IUGS ICS Stratigraphic Chart, 2009. MddleTriassic umr cgiclassifier:ICS:StratChart.2009.0 a1.1.2.3.2.2 Anisian MddleTriassic 237 ± 2 - 228.7 IUGS ICS Stratigraphic Chart, 2009. Ladinian umr cgiclassifier:ICS:StratChart.2009.0 a1.1.2.3.3.2 Anisian MddleTriassic 237 ± 2 - 237 ± 2 IUGS ICS Stratigraphic Chart, 2009. Ladinian umr cgiclassifier:ICS:StratChart.2009.0 a1.1.2.3.3.1 Olenekian Low er Triassic<	a1.1.2.3	Triassic	Mesozoic	251 ±0.4 - 199.6 ±0.6	IUGS ICS Stratigraphic	Triassic	urn:cgi:classifier:ICS:StratChart:200908:
Chart, 2009. Chart, 2009. UpperTriassic UpperTriassic a1.1.2.3.1.1 Rhaetian UpperTriassic 203.6 ±1.5 - 199.6 ±0.6 LGS ICS Stratigraphic Chart, 2009. Rhaetian Umr:ogitclassifier:ICS:StratOntr.20090. a1.1.2.3.1.2 Norian UpperTriassic 216.5 ±2 - 203.6 ±1.5 UGS ICS Stratigraphic Chart, 2009. Norian Umr:ogitclassifier:ICS:StratChart.20090. a1.1.2.3.1.3 Carnian UpperTriassic 228.7 - 216.5 ±2 UGS ICS Stratigraphic Chart, 2009. Norian Umr:ogitclassifier:ICS:StratChart.20090. a1.1.2.3.2 Middle Triassic Triassic 245.9 - 228.7 UGS ICS Stratigraphic Chart, 2009. MddleTriassic Umr:ogitclassifier:ICS:StratChart.20090. a1.1.2.3.2.1 Ladinian MddleTriassic 237 ±2 - 228.7 IUGS ICS Stratigraphic Chart, 2009. Anisian Umr:ogitclassifier:ICS:StratChart.20090. a1.1.2.3.2.1 Ladinian MddleTriassic 245.9 - 237 ±2 IUGS ICS Stratigraphic Chart, 2009. Ladinian Umr:ogitclassifier:ICS:StratChart.20090. a1.1.2.3.3.1 Olenekian Low erTriassic Triassic 245.9 - 237 ±2 IUGS ICS Stratigraphic Chart, 2009. Low erTriassic					Chart, 2009.		Triassic
a1.1.2.3.1.1 Rhaetian UpperTriassic 203.6 ± 1.5 · 199.6 ± 0.6 UGS ICS Stratigraphic Chart, 2009. Rhaetian um:cgiclassifier:ICS:StratChart:20090. a1.1.2.3.1.2 Norian UpperTriassic 216.5 ± 2 · 203.6 ± 1.5 IUGS ICS Stratigraphic Chart, 2009. Norian Um:cgiclassifier:ICS:StratChart:20090. a1.1.2.3.1.3 Carnian UpperTriassic 228.7 · 216.5 ± 2 IUGS ICS Stratigraphic Chart, 2009. Norian Um:cgiclassifier:ICS:StratChart:20090. a1.1.2.3.2 Middle Triassic Triassic 245.9 · 228.7 IUGS ICS Stratigraphic Chart, 2009. Middle Triassic Um:cgiclassifier:ICS:StratChart:20090. a1.1.2.3.2.1 Ladinian Middle Triassic 237 ± 2 · 228.7 IUGS ICS Stratigraphic Chart, 2009. Middle Triassic Um:cgiclassifier:ICS:StratChart:20090. a1.1.2.3.2.2 Anisian Middle Triassic 245.9 · 237 ± 2 IUGS ICS Stratigraphic Chart, 2009. Anisian Um:cgiclassifier:ICS:StratChart:20090. a1.1.2.3.3.1 Denekian Middle Triassic 245.9 · 237 ± 2 IUGS ICS Stratigraphic Chart, 2009. Anisian Um:cgiclassifier:ICS:StratChart:20090. a1.1.2.3.3.1 Olenekian Low er Triassic	a1.1.2.3.1	Late/Upper Triassic	Triassic	228.7 - 199.6 ±0.6	IUGS ICS Stratigraphic	UpperTriassic	urn:cgi:classifier:ICS:StratChart:200908:
AndChart, 2009.Rhaetiana1.1.2.3.1.2NorianUpperTriassic216.5 ± 2 203.6 ± 1.5UQS ICS Stratigraphic Chart, 2009.Norianum:cgitclassifier:ICS:StratChart:20090.a1.1.2.3.1.3CarnianUpperTriassic228.7 - 216.5 ± 2UUSS ICS Stratigraphic Chart, 2009.Carnianum:cgitclassifier:ICS:StratChart:20090. Carniana1.1.2.3.1.3Mddle TriassicTriassic245.9 - 228.7UCS ICS Stratigraphic Chart, 2009.MddleTriassicum:cgitclassifier:ICS:StratChart:20090. MddleTriassica1.1.2.3.2.1LadinianMddleTriassic237 ± - 228.7UCS ICS Stratigraphic Chart, 2009.Ladinianum:cgitclassifier:ICS:StratChart:20090. Anisiana1.1.2.3.2.2AnisianMddleTriassic245.9 - 237 ± 2UCS ICS Stratigraphic Chart, 2009.Anisianum:cgitclassifier:ICS:StratChart:20090. Anisiana1.1.2.3.3Early/Low er TriassicTriassic251 ± 0.4 - 245.9UCS ICS Stratigraphic Chart, 2009.Low er Triassicum:cgitclassifier:ICS:StratChart:20090. Anisiana1.1.2.3.1OlenekianLow er Triassic251 ± 0.4 - 249.5UCS ICS Stratigraphic Chart, 2009.Induanum:cgitclassifier:ICS:StratChart:20090. Induana1.1.3.3.2InduanLow er Triassic251 ± 0.4 - 249.5UCS ICS Stratigraphic Chart, 2009.Induanum:cgitclassifier:ICS:StratChart:20090. Induana1.1.3.1.1PermianPaleozoic542 ± 1 - 251 ± 0.4UCS ICS Stratigraphic Chart, 2009.Induanum:cgitclassifier:ICS:StratChart:20090. Induana1.1.3.1.1.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
a1.1.2.3.1.2 Norian UpperTriassic 216.5 ±2 - 203.6 ±1.5 IUGS ICS Stratigraphic Chart, 2009. Norian umr:cgi:classifier:ICS:StratChart:2009.0 a1.1.2.3.1.3 Carnian UpperTriassic 228.7 - 216.5 ±2 IUGS ICS Stratigraphic Chart, 2009. Carnian umr:cgi:classifier:ICS:StratChart:2009.0 a1.1.2.3.2 Mddle Triassic Triassic 245.9 - 228.7 IUGS ICS Stratigraphic Chart, 2009. Middle Triassic umr:cgi:classifier:ICS:StratChart:2009.0 a1.1.2.3.2.1 Ladinian Middle Triassic 237 ±2 - 228.7 IUGS ICS Stratigraphic Chart, 2009. Ladinian umr:cgi:classifier:ICS:StratChart:2009.0 a1.1.2.3.2.2 Anisian MiddleTriassic 237 ±2 - 228.7 IUGS ICS Stratigraphic Chart, 2009. Ladinian umr:cgi:classifier:ICS:StratChart:2009.0 a1.1.2.3.2.2 Anisian MiddleTriassic 245.9 - 237 ±2 IUGS ICS Stratigraphic Chart, 2009. Anisian umr:cgi:classifier:ICS:StratChart:2009.0 a1.1.2.3.3 Early/Low er Triassic Triassic 251 ±0.4 - 245.9 IUGS ICS Stratigraphic Chart, 2009. Olenekian umr:cgi:classifier:ICS:StratChart:2009.0 a1.1.2.3.3.1 Induan Low erTriassic 251 ±0.4 - 249.5 IUGS ICS Stratigraphic Chart, 2009. Oleneki	a1.1.2.3.1.1	Rhaetian	UpperTriassic	203.6 ±1.5 - 199.6 ±0.6	IUGS ICS Stratigraphic	Rhaetian	urn:cgi:classifier:ICS:StratChart:200908:
a1.1.2.3.1.3CarnianUperTriassic228.7 - 216.5 ±2IUGS ICS Stratigraphic Chart. 2009.CarnianNoriana1.1.2.3.2Mddle TriassicTriassic245.9 - 228.7IUGS ICS Stratigraphic Chart. 2009.Mddle Triassicurn:cgiclassifier:ICS:StratChart:20090. Mddle Triassica1.1.2.3.2.1LadinianMiddle Triassic237 ±2 - 228.7IUGS ICS Stratigraphic Chart. 2009.Mddle Triassicurn:cgiclassifier:ICS:StratChart:20090. Mddle Triassica1.1.2.3.2.2AnisianMiddle Triassic237 ±2 - 228.7IUGS ICS Stratigraphic Chart. 2009.Ladinianurn:cgiclassifier:ICS:StratChart:20090. Anisiana1.1.2.3.2.2AnisianMiddle Triassic245.9 - 237 ±2IUGS ICS Stratigraphic Chart. 2009.Anisianurn:cgiclassifier:ICS:StratChart:20090. Anisiana1.1.2.3.3Early/Low er TriassicTriassic251 ±0.4 - 245.9IUGS ICS Stratigraphic Chart. 2009.Low er Triassicurn:cgiclassifier:ICS:StratChart:20090. Chart. 2009.a1.1.2.3.3.1InduanLow er Triassic251 ±0.4 - 249.5IUGS ICS Stratigraphic Chart. 2009.Olenekianurn:cgiclassifier:ICS:StratChart:20090. 							
a1.1.2.3.1.3 Carnian UpperTriassic 228.7 - 216.5 ±2 IUGS ICS Stratigraphic Chart, 2009. Carnian um:cgi:classifier:ICS:StratChart:20090. a1.1.2.3.2 Middle Triassic Triassic 245.9 - 228.7 IUGS ICS Stratigraphic Chart, 2009. Middle Triassic um:cgi:classifier:ICS:StratChart:20090. a1.1.2.3.2.1 Ladinian Middle Triassic 237 ±2 - 228.7 IUGS ICS Stratigraphic Chart, 2009. Ladinian um:cgi:classifier:ICS:StratChart:20090. a1.1.2.3.2.2 Anisian Middle Triassic 245.9 - 237 ±2 IUGS ICS Stratigraphic Chart, 2009. Ladinian um:cgi:classifier:ICS:StratChart:20090. a1.1.2.3.3 Early/Low er Triassic Triassic 251 ±0.4 - 245.9 IUGS ICS Stratigraphic Chart, 2009. Low erTriassic um:cgi:classifier:ICS:StratChart:20090. a1.1.2.3.3.1 Olenekian Low er Triassic 245.9 - 245.9 IUGS ICS Stratigraphic Chart, 2009. Olenekian um:cgi:classifier:ICS:StratChart:20090. a1.1.2.3.3.1 Olenekian Low er Triassic 251 ±0.4 - 249.5 IUGS ICS Stratigraphic Chart, 2009. Olenekian um:cgi:classifier:ICS:StratChart:20090. a1.1.3.1.1 Paleozoic Phanerozoic 542 ±1 - 251 ±0.4 IUGS ICS Stratigraphic Chart, 2009. P	a1.1.2.3.1.2	Norian	UpperTriassic	216.5 ±2 - 203.6 ±1.5	IUGS ICS Stratigraphic	Norian	urn:cgi:classifier:ICS:StratChart:200908:
a1.1.2.3.2Middle TriassicTriassic245.9 - 228.7LUGS ICS Stratigraphic Chart, 2009.Middle TriassicUrn: cgi:classifier:ICS:StratChart:20090.a1.1.2.3.2.1LadinianMiddle Triassic237 ±2 - 228.7LUGS ICS Stratigraphic Chart, 2009.LadinianUrn: cgi:classifier:ICS:StratChart:20090.a1.1.2.3.2.2AnisianMiddle Triassic245.9 - 237 ±2LUGS ICS Stratigraphic Chart, 2009.Ladinianurn: cgi:classifier:ICS:StratChart:20090.a1.1.2.3.3Early/Low er TriassicTriassic251 ±0.4 - 245.9IUGS ICS Stratigraphic Chart, 2009.Low er Triassicurn: cgi:classifier:ICS:StratChart:20090.a1.1.2.3.3.1OlenekianLow er Triassic249.5 - 245.9IUGS ICS Stratigraphic Chart, 2009.Olenekianurn: cgi:classifier:ICS:StratChart:20090.a1.1.2.3.3.2InduanLow er Triassic251 ±0.4 - 249.9IUGS ICS Stratigraphic Chart, 2009.Olenekianurn: cgi:classifier:ICS:StratChart:20090.a1.1.2.3.3.2InduanLow er Triassic251 ±0.4 - 249.5IUGS ICS Stratigraphic Chart, 2009.Olenekianurn: cgi:classifier:ICS:StratChart:20090.a1.1.3PaleozoicPaleozoic542 ±1 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Induanurn: cgi:classifier:ICS:StratChart:20090.a1.1.3.1PermianPaleozoic542 ±1 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Permianurn: cgi:classifier:ICS:StratChart:20090.a1.1.3.1.1LopingianPermian260.4 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Chard, 2009.<					Chart, 2009.		Norian
a1.1.2.3.2 Middle Triassic Triassic 245.9 - 228.7 IUGS ICS Stratigraphic Chart, 2009. Middle Triassic um:cgi:classifier:ICS:StratChart:200900 Mddle Triassic a1.1.2.3.2.1 Ladinian Middle Triassic 237 ± 2 - 228.7 IUGS ICS Stratigraphic Chart, 2009. Ladinian um:cgi:classifier:ICS:StratChart:200900 Ladinian a1.1.2.3.2.2 Anisian Middle Triassic 245.9 - 237 ± 2 IUGS ICS Stratigraphic Chart, 2009. Anisian um:cgi:classifier:ICS:StratChart:200900 Anisian a1.1.2.3.3.1 Middle Triassic 251 ± 0.4 - 245.9 IUGS ICS Stratigraphic Chart, 2009. Low er Triassic um:cgi:classifier:ICS:StratChart:200900 Low er Triassic a1.1.2.3.3.1 Olenekian Low er Triassic 251 ± 0.4 - 249.5 IUGS ICS Stratigraphic Chart, 2009. Olenekian um:cgi:classifier:ICS:StratChart:200900 Olenekian a1.1.3.3.2 Induan Low er Triassic 251 ± 0.4 - 249.5 IUGS ICS Stratigraphic Chart, 2009. Induan um:cgi:classifier:ICS:StratChart:200900 Olenekian a1.1.3.1 Paleozoic Phanerozoic 542 ± 1 - 251 ± 0.4 IUGS ICS Stratigraphic Chart, 2009. Paleozoic um:cgi:classifier:ICS:StratChart:200900 Paleozoic a1.1.3.1 Permian Paleozoic Paleozoic Um:cgi:classifi	a1.1.2.3.1.3	Carnian	UpperTriassic	228.7 - 216.5 ±2	IUGS ICS Stratigraphic	Carnian	urn:cgi:classifier:ICS:StratChart:200908:
a1.1.2.3.2.1LadinianMddle Triassic237 ±2 - 228.7IUGS ICS Stratigraphic Chart, 2009.Ladinianurn:cgi:classifier:ICS:StratChart:20090. Ladiniana1.1.2.3.2.2AnisianMddle Triassic245.9 - 237 ±2IUGS ICS Stratigraphic Chart, 2009.Anisianurn:cgi:classifier:ICS:StratChart:20090. Anisiana1.1.2.3.3.2Early/Low er TriassicTriassic251 ±0.4 - 245.9IUGS ICS Stratigraphic Chart, 2009.Low erTriassicurn:cgi:classifier:ICS:StratChart:20090. Low erTriassica1.1.2.3.3.1OlenekianLow erTriassic249.5 - 245.9IUGS ICS Stratigraphic Chart, 2009.Olenekianurn:cgi:classifier:ICS:StratChart:20090. UGS ICS Stratigraphic Chart, 2009.Urn:cgi:classifier:ICS:StratChart:20090. UGenekiana1.1.2.3.2.1InduanLow erTriassic251 ±0.4 - 249.5IUGS ICS Stratigraphic Chart, 2009.Olenekianurn:cgi:classifier:ICS:StratChart:20090. UGenekiana1.1.3PaleozoicPhanerozoic542 ±1 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Induanurn:cgi:classifier:ICS:StratChart:20090. Paleozoica1.1.3.1PermianPaleozoic299 ±0.8 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Paleozoicurn:cgi:classifier:ICS:StratChart:20090. Lopingiana1.1.3.1.1ChanghsingianLopingian260.4 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Lopingianurn:cgi:classifier:ICS:StratChart:20090. Lopingiana1.1.3.1.2WuchiapingianLopingian260.4 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingian <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Carnian</td></td<>							Carnian
a1.1.2.3.2.1 Ladinian Middle Triassic 237 ±2 - 228.7 IUGS ICS Stratigraphic Chart, 2009. Ladinian um:cgi:classifier:ICS:StratChart:20090. a1.1.2.3.2.2 Anisian Middle Triassic 245.9 - 237 ±2 IUGS ICS Stratigraphic Chart, 2009. Anisian um:cgi:classifier:ICS:StratChart:20090. a1.1.2.3.3 Early/Low er Triassic Triassic 251 ±0.4 - 245.9 IUGS ICS Stratigraphic Chart, 2009. Low erTriassic um:cgi:classifier:ICS:StratChart:20090. a1.1.2.3.3.1 Olenekian Low er Triassic 249.5 - 245.9 IUGS ICS Stratigraphic Chart, 2009. Olenekian um:cgi:classifier:ICS:StratChart:20090. a1.1.2.3.3.2 Induan Low er Triassic 251 ±0.4 - 249.5 IUGS ICS Stratigraphic Chart, 2009. Induan um:cgi:classifier:ICS:StratChart:20090. a1.1.3 Paleozoic Phanerozoic 542 ±1 - 251 ±0.4 IUGS ICS Stratigraphic Chart, 2009. Induan um:cgi:classifier:ICS:StratChart:20090. a1.1.3.1 Permian Paleozoic Phanerozoic 542 ±1 - 251 ±0.4 IUGS ICS Stratigraphic Chart, 2009. Permian um:cgi:classifier:ICS:StratChart:20090. a1.1.3.1 Lopingian Permian 260.4 ±0.7 - 251 ±0.4 IUGS ICS Stratigraphic Chart, 2009. Pe	a1.1.2.3.2	Middle Triassic	Triassic	245.9 - 228.7	IUGS ICS Stratigraphic	MiddleTriassic	urn:cgi:classifier:ICS:StratChart:200908:
a1.1.2.3.2.2AnisianMidde Triassic245.9 - 237 ±2UGS ICS Stratigraphic Chart, 2009.Anisianum:cgi:classifier:ICS:StratChart:20090. Anisiana1.1.2.3.3Early/Low er TriassicTriassic251 ±0.4 - 245.9UGS ICS Stratigraphic Chart, 2009.Low er TriassicUm:cgi:classifier:ICS:StratChart:20090. Low er Triassica1.1.2.3.3.1OlenekianLow er Triassic249.5 - 245.9UGS ICS Stratigraphic Chart, 2009.OlenekianUm:cgi:classifier:ICS:StratChart:20090. Low er Triassica1.1.2.3.3.2InduanLow er Triassic251 ±0.4 - 249.5UGS ICS Stratigraphic Chart, 2009.OlenekianUm:cgi:classifier:ICS:StratChart:20090. Iduana1.1.3.3.2InduanLow er Triassic251 ±0.4 - 249.5UGS ICS Stratigraphic Chart, 2009.InduanUm:cgi:classifier:ICS:StratChart:20090. Induana1.1.3.1PaleozoicPhanerozoic542 ±1 - 251 ±0.4UGS ICS Stratigraphic Chart, 2009.PaleozoicUm:cgi:classifier:ICS:StratChart:20090. Paleozoica1.1.3.1.1LopingianPermian260.4 ±0.7 - 251 ±0.4UGS ICS Stratigraphic Chart, 2009.PermianUm:cgi:classifier:ICS:StratChart:20090. Depingiana1.1.3.1.1.2WuchiapingianLopingian253.8 ±0.7 - 251 ±0.4UGS ICS Stratigraphic Chart, 2009.ChanghsingianUm:cgi:classifier:ICS:StratChart:20090. Chart, 2009.a1.1.3.1.1.2WuchiapingianLopingian260.4 ±0.7 - 253.8 ±0.7UGS ICS Stratigraphic Chart, 2009.ChanghsingianUm:cgi:classifier:ICS:StratChart:200900. Chard, 2009.a1.1.3.1.2 <td></td> <td></td> <td></td> <td></td> <td>Chart, 2009.</td> <td></td> <td>MiddleTriassic</td>					Chart, 2009.		MiddleTriassic
a1.1.2.3.2.2AnisianMiddle Triassic245.9 - 237 ± 2IUGS ICS Stratigraphic Chart, 2009.Anisianurn:cgi:classifier:ICS:StratChart:200904 Anisiana1.1.2.3.3Early/Low er TriassicTriassic251 ± 0.4 - 245.9IUGS ICS Stratigraphic Chart, 2009.Low er Triassicurn:cgi:classifier:ICS:StratChart:200904 Low er Triassica1.1.2.3.3.1OlenekianLow er Triassic249.5 - 245.9IUGS ICS Stratigraphic Chart, 2009.OlenekianUrn:cgi:classifier:ICS:StratChart:200904 Olenekiana1.1.2.3.3.2InduanLow er Triassic251 ± 0.4 - 249.5IUGS ICS Stratigraphic Chart, 2009.OlenekianUrn:cgi:classifier:ICS:StratChart:200904 Olenekiana1.1.3PaleozoicPhanerozoic542 ± 1 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.PaleozoicUrn:cgi:classifier:ICS:StratChart:200904 Induana1.1.3.1PermianPaleozoic299 ± 0.8 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Permianurn:cgi:classifier:ICS:StratChart:200904 Paleozoica1.1.3.1.1LopingianPermian260.4 ± 0.7 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Permianurn:cgi:classifier:ICS:StratChart:200904 Permiana1.1.3.1.1.1ChanghsingianLopingian253.8 ± 0.7 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Lopingianurn:cgi:classifier:ICS:StratChart:200904 Chart, 2009.a1.1.3.1.1.2GuadalupianLopingian260.4 ± 0.7 - 253.8 ± 0.7IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:200904 Chart, 2009. <t< td=""><td>a1.1.2.3.2.1</td><td>Ladinian</td><td>MiddleTriassic</td><td>237 ±2 - 228.7</td><td>IUGS ICS Stratigraphic</td><td>Ladinian</td><td>urn:cgi:classifier:ICS:StratChart:200908:</td></t<>	a1.1.2.3.2.1	Ladinian	MiddleTriassic	237 ±2 - 228.7	IUGS ICS Stratigraphic	Ladinian	urn:cgi:classifier:ICS:StratChart:200908:
AnisianChart, 2009.Anisiana1.1.2.3.3Early/Low er TriassicTriassic251 ± 0.4 - 245.9IUGS ICS Stratigraphic Chart, 2009.Low er Triassicurn: cgi:classifier:ICS:StratChart:200902 Low er Triassica1.1.2.3.3.1OlenekianLow erTriassic249.5 - 245.9IUGS ICS Stratigraphic Chart, 2009.Olenekianurn: cgi:classifier:ICS:StratChart:200902 Olenekiana1.1.2.3.3.2InduanLow erTriassic251 ± 0.4 - 249.5IUGS ICS Stratigraphic Chart, 2009.Induanurn: cgi:classifier:ICS:StratChart:200902 Olenekiana1.1.3PaleozoicPhanerozoic251 ± 0.4 - 249.5IUGS ICS Stratigraphic Chart, 2009.Induanurn: cgi:classifier:ICS:StratChart:200902 Induana1.1.3PaleozoicPhanerozoic259 ± 0.4 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Paleozoicurn: cgi:classifier:ICS:StratChart:200902 Paleozoica1.1.3.1PermianPaleozoic299 ± 0.8 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Permianurn: cgi:classifier:ICS:StratChart:200902 Paleozoica1.1.3.1.1ChopingianPermian260.4 ± 0.7 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn: cgi:classifier:ICS:StratChart:200902 Chart, 2009.a1.1.3.1.1.2WuchiapingianLopingian253.8 ± 0.7 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn: cgi:classifier:ICS:StratChart:200902 Changhsingiana1.1.3.1.2GuadalupianLopingian260.4 ± 0.7 - 253.8 ± 0.7IUGS ICS Stratigraphic Chart, 2009.Changhsingian					Chart, 2009.		Ladinian
a1.1.2.3.3Early/Low er TriassicTriassic251 ±0.4 - 245.9IUGS ICS Stratigraphic Chart, 2009.Low er Triassicurn:cgi:classifier:ICS:StratChart:20090 Low er Triassica1.1.2.3.3.1OlenekianLow er Triassic249.5 - 245.9IUGS ICS Stratigraphic Chart, 2009.Olenekianurn:cgi:classifier:ICS:StratChart:20090 Olenekiana1.1.2.3.3.2InduanLow er Triassic251 ±0.4 - 249.5IUGS ICS Stratigraphic Chart, 2009.Olenekianurn:cgi:classifier:ICS:StratChart:200900 Induana1.1.3PaleozoicPhanerozoic542 ±1 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Paleozoicurn:cgi:classifier:ICS:StratChart:200900 Induana1.1.3.1PermianPaleozoic299 ±0.8 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Permian Permianurn:cgi:classifier:ICS:StratChart:200900 Paleozoica1.1.3.1.1LopingianPermian260.4 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Permian Urn:cgi:classifier:ICS:StratChart:200900 Paleozoica1.1.3.1.1ChanghsingianLopingian253.8 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:200900 Chart, 2009.a1.1.3.1.2WuchiapingianLopingian260.4 ±0.7 - 253.8 ±0.7IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:200900 Wuchiapingiana1.1.3.1.2GuadalupianPermian270.6 ±0.7 - 260.4 ±0.7IUGS ICS Stratigraphic Chart, 2009.Wuchiapingianurn:cgi:classifier:ICS:StratChart:200900 Wuchiapingian<	a1.1.2.3.2.2	Anisian	MiddleTriassic	245.9 - 237 ±2	IUGS ICS Stratigraphic	Anisian	urn:cgi:classifier:ICS:StratChart:200908:
Alt.Chart, 2009.Low er Triassica1.1.2.3.3.1OlenekianLow er Triassic249.5 - 245.9IUGS ICS Stratigraphic Chart, 2009.Olenekianurn:cgi:classifier:ICS:StratChart:20090. Olenekiana1.1.2.3.3.2InduanLow er Triassic251 ± 0.4 - 249.5IUGS ICS Stratigraphic Chart, 2009.Induanurn:cgi:classifier:ICS:StratChart:20090. Induana1.1.3PaleozoicPhanerozoic542 ± 1 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Paleozoicurn:cgi:classifier:ICS:StratChart:20090. Induana1.1.3.1PermianPaleozoic299 ± 0.8 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Permianurn:cgi:classifier:ICS:StratChart:20090. Paleozoica1.1.3.1.1LopingianPermian260.4 ± 0.7 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Lopingianurn:cgi:classifier:ICS:StratChart:20090. Permiana1.1.3.1.1ChanghsingianLopingian260.4 ± 0.7 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:20090. Chart, 2009.a1.1.3.1.1ChanghsingianLopingian260.4 ± 0.7 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:20090. Chart, 2009.a1.1.3.1.2GuadalupianLopingian260.4 ± 0.7 - 253.8 ± 0.7IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:20090. Chart, 2009.a1.1.3.1.2GuadalupianLopingian270.6 ± 0.7 - 260.4 ± 0.7IUGS ICS Stratigraphic Chart, 2009.Guadalupianu					Chart, 2009.		Anisian
a1.1.2.3.3.1OlenekianLow er Triassic249.5 - 245.9IUGS ICS Stratigraphic Chart, 2009.Olenekianurn:cgi:classifier:ICS:StratChart:200900 Olenekiana1.1.2.3.3.2InduanLow er Triassic251 ± 0.4 - 249.5IUGS ICS Stratigraphic Chart, 2009.Induanurn:cgi:classifier:ICS:StratChart:200900 Induana1.1.3PaleozoicPhanerozoic542 ± 1 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Paleozoicurn:cgi:classifier:ICS:StratChart:200900 Paleozoica1.1.3.1PermianPaleozoic299 ± 0.8 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Permianurn:cgi:classifier:ICS:StratChart:200900 Paleozoica1.1.3.1.1LopingianPermian260.4 ± 0.7 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Permianurn:cgi:classifier:ICS:StratChart:200900 Permiana1.1.3.1.1.1ChanghsingianLopingian253.8 ± 0.7 - 251 ± 0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:200900 Chart, 2009.a1.1.3.1.2WuchiapingianLopingian260.4 ± 0.7 - 253.8 ± 0.7IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:200900 Chart, 2009.a1.1.3.1.2GuadalupianPermian270.6 ± 0.7 - 260.4 ± 0.7IUGS ICS Stratigraphic Chart, 2009.Wuchiapingianurn:cgi:classifier:ICS:StratChart:200901 Chart, 2009.UGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:200901 Chart, 2009.a1.1.3.1.2GuadalupianPermian270.6 ± 0.7 - 260.4 ± 0.7	a1.1.2.3.3	Early/Low er Triassic	Triassic	251 ±0.4 - 245.9	IUGS ICS Stratigraphic	Low erTriassic	urn:cgi:classifier:ICS:StratChart:200908:
Chart, 2009.Olenekiana1.1.2.3.3.2InduanLow erTriassic251 ±0.4 - 249.5IUGS ICS Stratigraphic Chart, 2009.Induanurn:cgi:classifier:ICS:StratChart:20090 Induana1.1.3PaleozoicPhanerozoic542 ±1 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Paleozoicurn:cgi:classifier:ICS:StratChart:20090 Paleozoica1.1.3.1PermianPaleozoic299 ±0.8 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Permianurn:cgi:classifier:ICS:StratChart:20090 Paleozoica1.1.3.1.1LopingianPermian260.4 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Lopingianurn:cgi:classifier:ICS:StratChart:200904 Chart, 2009.a1.1.3.1.1ChanghsingianLopingian253.8 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:200904 Chart, 2009.a1.1.3.1.2WuchiapingianLopingian260.4 ±0.7 - 253.8 ±0.7IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:200904 Chart, 2009.a1.1.3.1.2GuadalupianPermian270.6 ±0.7 - 260.4 ±0.7IUGS ICS Stratigraphic Chart, 2009.Wuchiapingianurn:cgi:classifier:ICS:StratChart:200904 Chart, 2009.					Chart, 2009.		Low erTriassic
a1.1.2.3.3.2InduanLow erTriassic251 ±0.4 - 249.5IUGS ICS Stratigraphic Chart, 2009.Induanurn:cg:classifier:ICS:StratChart:20090a1.1.3PaleozoicPhanerozoic542 ±1 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Paleozoicurn:cg:classifier:ICS:StratChart:200900a1.1.3.1PermianPaleozoic299 ±0.8 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Permianurn:cg:classifier:ICS:StratChart:200900a1.1.3.1.1LopingianPermian260.4 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Lopingianurn:cg:classifier:ICS:StratChart:200900a1.1.3.1.1.1ChanghsingianLopingian253.8 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cg:classifier:ICS:StratChart:200900a1.1.3.1.2GuadalupianLopingian260.4 ±0.7 - 253.8 ±0.7IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cg:classifier:ICS:StratChart:200900a1.1.3.1.2GuadalupianPermian270.6 ±0.7 - 260.4 ±0.7IUGS ICS Stratigraphic Chart, 2009.Wuchiapingianurn:cg:classifier:ICS:StratChart:200900	a1.1.2.3.3.1	Olenekian	Low erTriassic	249.5 - 245.9	IUGS ICS Stratigraphic	Olenekian	urn:cgi:classifier:ICS:StratChart:200908:
AlternationChart, 2009.Induana1.1.3PaleozoicPhanerozoic542 ±1 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Paleozoicurn:cgi:classifier:ICS:StratChart:20090 Paleozoica1.1.3.1PermianPaleozoic299 ±0.8 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Permianurn:cgi:classifier:ICS:StratChart:20090 Permiana1.1.3.1.1LopingianPermian260.4 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Lopingianurn:cgi:classifier:ICS:StratChart:200904 Lopingiana1.1.3.1.1.1ChanghsingianLopingian260.4 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Lopingianurn:cgi:classifier:ICS:StratChart:200904 Lopingiana1.1.3.1.1.2WuchiapingianLopingian253.8 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingian Urn:cgi:classifier:ICS:StratChart:200904 Chart, 2009.a1.1.3.1.2GuadalupianPermian270.6 ±0.7 - 260.4 ±0.7IUGS ICS Stratigraphic Chart, 2009.Wuchiapingian Urn:cgi:classifier:ICS:StratChart:200904 Wuchiapingian							Olenekian
a1.1.3PaleozoicPhanerozoic542 ±1 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Paleozoicurn:cgi:classifier:ICS:StratChart:20090 Paleozoica1.1.3.1PermianPaleozoic299 ±0.8 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Permianurn:cgi:classifier:ICS:StratChart:20090 Permiana1.1.3.1.1LopingianPermian260.4 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Lopingianurn:cgi:classifier:ICS:StratChart:20090 Permiana1.1.3.1.1ChanghsingianLopingian253.8 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:200906 Chart, 2009.a1.1.3.1.1.2WuchiapingianLopingian260.4 ±0.7 - 253.8 ±0.7IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:200906 Chart, 2009.a1.1.3.1.2GuadalupianPermian270.6 ±0.7 - 260.4 ±0.7IUGS ICS Stratigraphic Chart, 2009.Wuchiapingianurn:cgi:classifier:ICS:StratChart:200906 Chart, 2009.	a1.1.2.3.3.2	Induan	Low erTriassic	251 ±0.4 - 249.5	IUGS ICS Stratigraphic	Induan	urn:cgi:classifier:ICS:StratChart:200908:
addaddChart, 2009.Paleozoica1.1.3.1PermianPaleozoic299 ±0.8 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Permianurn:cgi:classifier:ICS:StratChart:20090a1.1.3.1.1LopingianPermian260.4 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Lopingianurn:cgi:classifier:ICS:StratChart:20090a1.1.3.1.1ChanghsingianLopingian253.8 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Lopingianurn:cgi:classifier:ICS:StratChart:20090a1.1.3.1.1.2WuchiapingianLopingian260.4 ±0.7 - 253.8 ±0.7IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:20090a1.1.3.1.2GuadalupianPermian270.6 ±0.7 - 260.4 ±0.7IUGS ICS Stratigraphic Chart, 2009.Guadalupianurn:cgi:classifier:ICS:StratChart:20090a1.1.3.1.2GuadalupianPermian270.6 ±0.7 - 260.4 ±0.7IUGS ICS Stratigraphic Chart, 2009.Guadalupianurn:cgi:classifier:ICS:StratChart:20090					Chart, 2009.		Induan
a1.1.3.1PermianPaleozoic299 ±0.8 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Permianurn:cgi:classifier:ICS:StratChart:20090 Permiana1.1.3.1.1LopingianPermian260.4 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Lopingianurn:cgi:classifier:ICS:StratChart:20090 Lopingiana1.1.3.1.1.1ChanghsingianLopingian253.8 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:20090 Lopingiana1.1.3.1.1.2WuchiapingianLopingian260.4 ±0.7 - 253.8 ±0.7IUGS ICS Stratigraphic Chart, 2009.Changhsingian Urn:cgi:classifier:ICS:StratChart:20090 Chart, 2009.a1.1.3.1.2GuadalupianPermian270.6 ±0.7 - 260.4 ±0.7IUGS ICS Stratigraphic Chart, 2009.Wuchiapingian Urn:cgi:classifier:ICS:StratChart:200904 Urn:cgi:classifier:ICS:StratChart:200904 Chart, 2009.	a1.1.3	Paleozoic	Phanerozoic	542 ±1 - 251 ±0.4	IUGS ICS Stratigraphic	Paleozoic	urn:cgi:classifier:ICS:StratChart:200908:
additionChart, 2009.Permiana1.1.3.1.1LopingianPermian260.4 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Lopingianurn:cgi:classifier:ICS:StratChart:20090 Lopingiana1.1.3.1.1.1ChanghsingianLopingian253.8 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:20090 Lopingiana1.1.3.1.1.2WuchiapingianLopingian260.4 ±0.7 - 253.8 ±0.7IUGS ICS Stratigraphic Chart, 2009.Changhsingian Urn:cgi:classifier:ICS:StratChart:20090 Chart, 2009.a1.1.3.1.2GuadalupianPermian270.6 ±0.7 - 260.4 ±0.7IUGS ICS Stratigraphic Chart, 2009.Wuchiapingian Urn:cgi:classifier:ICS:StratChart:20090 Wuchiapingian					Chart, 2009.		Paleozoic
a1.1.3.1.1LopingianPermian260.4 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Lopingianurn:cgi:classifier:ICS:StratChart:20090 Lopingiana1.1.3.1.1.1ChanghsingianLopingian253.8 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:20090 Lopingiana1.1.3.1.1.2WuchiapingianLopingian260.4 ±0.7 - 253.8 ±0.7IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:20090 Chart, 2009.a1.1.3.1.2GuadalupianPermian270.6 ±0.7 - 260.4 ±0.7IUGS ICS Stratigraphic Chart, 2009.Wuchiapingian Urn:cgi:classifier:ICS:StratChart:200906 Urn:cgi:classifier:ICS:StratChart:200906 Chart, 2009.	a1.1.3.1	Permian	Paleozoic	299 ±0.8 - 251 ±0.4	IUGS ICS Stratigraphic	Permian	urn:cgi:classifier:ICS:StratChart:200908:
a1.1.3.1.1.1ChanghsingianLopingian253.8 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:20090 Changhsingiana1.1.3.1.1.2WuchiapingianLopingian260.4 ±0.7 - 253.8 ±0.7IUGS ICS Stratigraphic Chart, 2009.Wuchiapingianurn:cgi:classifier:ICS:StratChart:20090 Changhsingiana1.1.3.1.2GuadalupianPermian270.6 ±0.7 - 260.4 ±0.7IUGS ICS Stratigraphic UGS ICS StratigraphicGuadalupianurn:cgi:classifier:ICS:StratChart:20090 Wuchiapingian					Chart, 2009.		Permian
a1.1.3.1.1.1ChanghsingianLopingian253.8 ±0.7 - 251 ±0.4IUGS ICS Stratigraphic Chart, 2009.Changhsingianurn:cgi:classifier:ICS:StratChart:20090a1.1.3.1.1.2WuchiapingianLopingian260.4 ±0.7 - 253.8 ±0.7IUGS ICS Stratigraphic Chart, 2009.Wuchiapingianurn:cgi:classifier:ICS:StratChart:200908a1.1.3.1.2GuadalupianPermian270.6 ±0.7 - 260.4 ±0.7IUGS ICS Stratigraphic UGS ICS StratigraphicGuadalupianurn:cgi:classifier:ICS:StratChart:200908urn:cgi:classifier:ICS:StratChart:200908Urn:cgi:classifier:ICS:StratChart:200908Urn:cgi:classifier:ICS:StratChart:200908a1.1.3.1.2GuadalupianPermian270.6 ±0.7 - 260.4 ±0.7IUGS ICS StratigraphicGuadalupian	a1.1.3.1.1	Lopingian	Permian	260.4 ±0.7 - 251 ±0.4	IUGS ICS Stratigraphic	Lopingian	urn:cgi:classifier:ICS:StratChart:200908:
a1.1.3.1.2 Wuchiapingian Lopingian 260.4 ±0.7 - 253.8 ±0.7 IUGS ICS Stratigraphic Chart, 2009. Wuchiapingian urn:cgi:classifier:ICS:StratChart:200908 a1.1.3.1.2 Guadalupian Permian 270.6 ±0.7 - 260.4 ±0.7 IUGS ICS Stratigraphic Chart, 2009. Guadalupian urn:cgi:classifier:ICS:StratChart:200908					Chart, 2009.		Lopingian
a1.1.3.1.1.2 Wuchiapingian Lopingian 260.4 ±0.7 - 253.8 ±0.7 IUGS ICS Stratigraphic Chart, 2009. Wuchiapingian urn:cgi:classifier:ICS:StratChart:200908 a1.1.3.1.2 Guadalupian Permian 270.6 ±0.7 - 260.4 ±0.7 IUGS ICS Stratigraphic Guadalupian urn:cgi:classifier:ICS:StratChart:200908	a1.1.3.1.1.1	Changhsingian	Lopingian	253.8 ±0.7 - 251 ±0.4	IUGS ICS Stratigraphic	Changhsingian	urn:cgi:classifier:ICS:StratChart:200908:
Image: second					Chart, 2009.		Changhsingian
Image: second	a1.1.3.1.1.2	Wuchiapingian	Lopingian	260.4 ±0.7 - 253.8 ±0.7	IUGS ICS Stratigraphic	Wuchiapingian	urn:cgi:classifier:ICS:StratChart:200908:
					Chart, 2009.		Wuchiapingian
Chart, 2009. Guadalupian	a1.1.3.1.2	Guadalupian	Permian	270.6 ±0.7 - 260.4 ±0.7	IUGS ICS Stratigraphic	Guadalupian	urn:cgi:classifier:ICS:StratChart:200908:
					Chart, 2009.		Guadalupian

1G-EID	1G-ETerm	1G-E Broader	Definition (Ma)	Source	CGI_URN	Complete URN
		Concept				
a1.1.3.1.2.1	Capitanian	Guadalupian	265.8 ±0.7 - 260.4 ±0.7	IUGS ICS Stratigraphic	Capitanian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Capitanian
a1.1.3.1.2.2	Wordian	Guadalupian	268 ±0.7 - 265.8 ±0.7	IUGS ICS Stratigraphic	Wordian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Wordian
a1.1.3.1.2.3	Roadian	Guadalupian	270.6 ±0.7 - 268 ±0.7	IUGS ICS Stratigraphic	Roadian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Roadian
a1.1.3.1.3	Cisuralian	Permian	299 ±0.8 - 270.6 ±0.7	IUGS ICS Stratigraphic	Cisuralian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Cisuralian
a1.1.3.1.3.1	Kungurian	Cisuralian	275.6 ±0.7 - 270.6 ±0.7	IUGS ICS Stratigraphic	Kungurian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Kungurian
a1.1.3.1.3.2	Artinskian	Cisuralian	284.4 ±0.7 - 275.6 ±0.7	IUGS ICS Stratigraphic	Artinskian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Artinskian
a1.1.3.1.3.3	Sakmarian	Cisuralian	294.6 ±0.8 - 284.4 ±0.7	IUGS ICS Stratigraphic	Sakmarian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Sakmarian
a1.1.3.1.3.4	Asselian	Cisuralian	299 ±0.8 - 294.6 ±0.8	IUGS ICS Stratigraphic	Asselian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Asselian
a1.1.3.2	Carboniferous	Paleozoic	359.2 ±2.5 - 299 ±0.8	IUGS ICS Stratigraphic	Carboniferous	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Carboniferous
a1.1.3.2.1	Pennsylvanian	Carboniferous	318.1 ±1.3 - 299 ±0.8	IUGS ICS Stratigraphic	Pennsylvanian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Pennsylvanian
a1.1.3.2.1.1	Late/Upper	Pennsylvanian	307.2 ±1 - 299 ±0.8	IUGS ICS Stratigraphic	Upper_Pennsylvanian	urn:cgi:classifier:ICS:StratChart:200908:
	Pennsylvanian			Chart, 2009.		Upper_Pennsylvanian
a1.1.3.2.1.1.1	Gzhelian	Upper_Pennsylvanian	303.4 ±0.9 - 299 ±0.8	IUGS ICS Stratigraphic	Gzhelian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Gzhelian
a1.1.3.2.1.1.2	Kasimovian	Upper_Pennsylvanian	307.2 ±1 - 303.4 ±0.9	IUGS ICS Stratigraphic	Kasimovian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Kasimovian
a1.1.3.2.1.2	Moscovian	Pennsylvanian	311.7 ±1.1 - 307.2 ±1;	IUGS ICS Stratigraphic	Moscovian	urn:cgi:classifier:ICS:StratChart:200908:
			Synonym: Middle	Chart, 2009.		Moscovian
			Pennsylvanian.			
a1.1.3.2.1.3	Bashkirian	Pennsylvanian	318.1 ±1.3 - 311.7 ±1.1;	IUGS ICS Stratigraphic	Bashkirian	urn:cgi:classifier:ICS:StratChart:200908:
			Synonym: Early	Chart, 2009.		Bashkirian
			Pennsylvanian.			
a1.1.3.2.2	Mississippian	Carboniferous	359.2 ±2.5 - 318.1 ±1.3	IUGS ICS Stratigraphic	Mississippian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Mississippian

1G-EID	1G-ETerm	1G-E Broader	Definition (Ma)	Source	CGI_URN	Complete URN
		Concept				
a1.1.3.2.2.1	Serpukhovian	Mississippian	328.3 ±1.6 - 318.1 ±1.3;	IUGS ICS Stratigraphic	Serpukhovian	urn:cgi:classifier:ICS:StratChart:200908:
			Synonym: Late	Chart, 2009.		Serpukhovian
			Mississippian.			
a1.1.3.2.2.2	Visean	Mississippian	345.3 ±2.1 - 328.3 ±1.6;	IUGS ICS Stratigraphic	Visean	urn:cgi:classifier:ICS:StratChart:200908:
			Synonym: Middle	Chart, 2009.		Visean
			Mississippian.			
a1.1.3.2.2.3	Tournaisian	Mississippian	359.2 ±2.5 - 345.3 ±2.1;	IUGS ICS Stratigraphic	Tournaisian	urn:cgi:classifier:ICS:StratChart:200908:
			Synonym: Early	Chart, 2009.		Tournaisian
			Mississippian.			
a1.1.3.3	Devonian	Paleozoic	416 ±2.8 - 359.2 ±2.5	IUGS ICS Stratigraphic	Devonian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Devonian
a1.1.3.3.1	Late/Upper Devonian	Devonian	385.3 ±2.6 - 359.2 ±2.5	IUGS ICS Stratigraphic	UpperDevonian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		UpperDevonian
a1.1.3.3.1.1	Famennian	Upper Devonian	374.5 ±2.6 - 359.2 ±2.5	IUGS ICS Stratigraphic	Famennian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Famennian
a1.1.3.3.1.2	Frasnian	Upper Devonian	385.3 ±2.6 - 374.5 ±2.6	IUGS ICS Stratigraphic	Frasnian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Frasnian
a1.1.3.3.2	Middle Devonian	Devonian	397.5 ±2.7 - 385.3 ±2.6	IUGS ICS Stratigraphic	MiddleDevonian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		MiddleDevonian
a1.1.3.3.2.1	Givetian	Middle Devonian	391.8 ±2.7 - 385.3 ±2.6	IUGS ICS Stratigraphic	Givetian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Givetian
a1.1.3.3.2.2	Eifelian	Middle Devonian	397.5 ±2.7 - 391.8 ±2.7	IUGS ICS Stratigraphic	Eifelian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Eifelian
a1.1.3.3.3	Early/Low er	Devonian	416 ±2.8 - 397.5 ±2.7	IUGS ICS Stratigraphic	Low erDevonian	urn:cgi:classifier:ICS:StratChart:200908:
	Devonian			Chart, 2009.		LowerDevonian
a1.1.3.3.3.1	Emsian	Low er Devonian	407 ±2.8 - 397.5 ±2.7	IUGS ICS Stratigraphic	Emsian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Emsian
a1.1.3.3.3.2	Pragian	Low er Devonian	411.2 ±2.8 - 407 ±2.8	IUGS ICS Stratigraphic	Pragian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Pragian
a1.1.3.3.3.3	Lochkovian	Low er Devonian	416 ±2.8 - 411.2 ±2.8	IUGS ICS Stratigraphic	Lochkovian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Lochkovian
a1.1.3.4	Silurian	Paleozoic	443.7 ±1.5 - 416 ±2.8	IUGS ICS Stratigraphic	Silurian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Silurian

1G-EID	1G-E Term	1G-E Broader	Definition (Ma)	Source	CGI_URN	Complete URN
		Concept				
a1.1.3.4.1	Pridoli	Silurian	418.7 ±2.7 - 416 ±2.8	IUGS ICS Stratigraphic	Pridoli	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Pridoli
a1.1.3.4.2	Ludlow	Silurian	422.9 ±2.5 - 418.7 ±2.7	IUGS ICS Stratigraphic	Ludlow	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Ludlow
a1.1.3.4.2.1	Ludfordian	Ludlow	421.3 ±2.6 - 418.7 ±2.7	IUGS ICS Stratigraphic	Ludfordian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Ludfordian
a1.1.3.4.2.2	Gorstian	Ludlow	422.9 ±2.5 - 421.3 ±2.6	IUGS ICS Stratigraphic	Gorstian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Gorstian
a1.1.3.4.3	Wenlock	Silurian	428.2 ±2.3 - 422.9 ±2.5	IUGS ICS Stratigraphic	Wenlock	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Wenlock
a1.1.3.4.3.1	Homerian	Wenlock	426.2 ±2.4 - 418.7 ±2.7	IUGS ICS Stratigraphic	Homerian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Homerian
a1.1.3.4.3.2	Sheinw oodian	Wenlock	428.2 ±2.3 - 426.2 ±2.4	IUGS ICS Stratigraphic	Sheinw oodian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Sheinw oodian
a1.1.3.4.4	Llandovery	Silurian	443.7 ±1.5 - 428.2 ±2.3	IUGS ICS Stratigraphic	Llandovery	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Llandovery
a1.1.3.4.4.1	Telychian	Llandovery	436 ±1.9 - 428.2 ±2.3	IUGS ICS Stratigraphic	Telychian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Telychian
a1.1.3.4.4.2	Aeronian	Llandovery	439 ±1.8 - 436 ±1.9	IUGS ICS Stratigraphic	Aeronian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Aeronian
a1.1.3.4.4.3	Rhuddanian	Llandovery	443.7 ±1.5 - 439 ±1.8	IUGS ICS Stratigraphic	Rhuddanian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Rhuddanian
a1.1.3.5	Ordovician	Paleozoic	488.3 ±1.7 - 443.7 ±1.5	IUGS ICS Stratigraphic	Ordovician	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Ordovician
a1.1.3.5.1	Late/Upper	Ordovician	460.9 ±1.6 - 443.7 ±1.5	IUGS ICS Stratigraphic	UpperOrdovician	urn:cgi:classifier:ICS:StratChart:200908:
	Ordovician			Chart, 2009.		UpperOrdovician
a1.1.3.5.1.1	Hirnantian	UpperOrdovician	445.6 ±1.5 - 443.7 ±1.5	IUGS ICS Stratigraphic	Hirnantian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Hirnantian
a1.1.3.5.1.2	Katian	UpperOrdovician	455.8 ±1.6 - 445.6 ±1.5	IUGS ICS Stratigraphic	Katian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Katian
a1.1.3.5.1.3	Sandbian	UpperOrdovician	460.9 ±1.6 - 455.8 ±1.6	IUGS ICS Stratigraphic	Sandbian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Sandbian
a1.1.3.5.2	Middle Ordovician	Ordovician	471.8 ±1.6 - 460.9 ±1.6	IUGS ICS Stratigraphic	MiddleOrdovician	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		MiddleOrdovician

1G-EID	1G-ETerm	1G-E Broader	Definition (Ma)	Source	CGI_URN	Complete URN
		Concept				
a1.1.3.5.2.1	Darriw ilian	MiddleOrdovician	468.1 ±1.6 - 460.9 ±1.6	IUGS ICS Stratigraphic	Darriw ilian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Darriw ilian
a1.1.3.5.2.2	Dapingian	MiddleOrdovician	471.8 ±1.6 - 468.1 ±1.6	IUGS ICS Stratigraphic	Dapingian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Dapingian
a1.1.3.5.3	Early/Low er	Ordovician	488.3 ±1.7 - 471.8 ±1.6	IUGS ICS Stratigraphic	Low erOrdovician	urn:cgi:classifier:ICS:StratChart:200908:
	Ordovician			Chart, 2009.		LowerOrdovician
a1.1.3.5.3.1	Floian	Low erOrdovician	478.6 ±1.7 - 471.8 ±1.6	IUGS ICS Stratigraphic	Floian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Floian
a1.1.3.5.3.2	Tremadocian	Low erOrdovician	488.3 ±1.7 - 478.6 ±1.7	IUGS ICS Stratigraphic	Tremadocian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Tremadocian
a1.1.3.6	Cambrian	Paleozoic	542 ±1 - 488.3 ±1.7	IUGS ICS Stratigraphic	Cambrian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Cambrian
a1.1.3.6.1	Furongian	Cambrian	499 - 488.3 ±1.7	IUGS ICS Stratigraphic	Furongian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Furongian
a1.1.3.6.1.1	Cambrian-Stage 10	Furongian	492 - 488.3 ±1.7	IUGS ICS Stratigraphic	Stage10	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Stage10
a1.1.3.6.1.2	Cambrian-Stage 9	Furongian	496 - 492	IUGS ICS Stratigraphic	Stage9	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Stage9
a1.1.3.6.1.3	Paibian	Furongian	499 - 496	IUGS ICS Stratigraphic	Paibian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Paibian
a1.1.3.6.2	Cambrian-Series 3	Cambrian	510 - 499	IUGS ICS Stratigraphic	Series3	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Series3
a1.1.3.6.2.1	Guzhangian	Series3	503 - 499	IUGS ICS Stratigraphic	Guzhangian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Guzhangian
a1.1.3.6.2.2	Drumian	Series3	506.5 - 503	IUGS ICS Stratigraphic	Drumian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Drumian
a1.1.3.6.2.3	Cambrian-Stage 5	Series3	510 - 506.5	IUGS ICS Stratigraphic	Stage5	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Stage5
a1.1.3.6.3	Cambrian-Series 2	Cambrian	521 - 510	IUGS ICS Stratigraphic	Series2	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Series2
a1.1.3.6.3.1	Cambrian-Stage 4	Series2	515 - 510	IUGS ICS Stratigraphic	Stage4	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Stage4
a1.1.3.6.3.2	Cambrian-Stage 3	Series2	521 - 515	IUGS ICS Stratigraphic	Stage3	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Stage3

1G-EID	1G-E Term	1G-E Broader	Definition (Ma)	Source	CGI_URN	Complete URN
		Concept				
a1.1.3.6.4	Terreneuvian	Cambrian	542 ±1 - 521	IUGS ICS Stratigraphic	Terreneuvian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Terreneuvian
a1.1.3.6.4.1	Cambrian-Stage 2	Terreneuvian	528 - 521	IUGS ICS Stratigraphic	Stage2	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Stage2
a1.1.3.6.4.2	Fortunian	Terreneuvian	542 ±1 - 528	IUGS ICS Stratigraphic	Fortunian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Fortunian
a2	Precambrian		4600 - 542	IUGS ICS Stratigraphic	Precambrian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Precambrian
a2.1	Proterozoic	Precambrian	2500 - 542	IUGS ICS Stratigraphic	Proterozoic	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Proterozoic
a2.1.1	Neoproterozoic	Proterozoic	1000 - 542	IUGS ICS Stratigraphic	Neoproterozoic	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Neoproterozoic
a2.1.1.1	Ediacaran	Neoprotero zoic	635 - 542	IUGS ICS Stratigraphic	Ediacaran	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Ediacaran
a2.1.1.2	Cryogenian	Neoprotero zoic	850 - 635	IUGS ICS Stratigraphic	Cryogenian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Cryogenian
a2.1.1.3	Tonian	Neoprotero zoic	1000 - 850	IUGS ICS Stratigraphic	Tonian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Tonian
a2.1.1.3.1	Tonian 2 *	Tonian	910 - 850	Koistinen et al., 2001.	Tonian2	urn:cgi:classifier:CGI:StratChart:2009:To
						nian2
a2.1.1.3.2	Tonian 1 *	Tonian	1000 - 910	Koistinen et al., 2001.	Tonian1	urn:cgi:classifier:CGI:StratChart:2009:To
						nian1
a2.1.2	Mesoproterozoic	Proterozoic	1600 - 1000	IUGS ICS Stratigraphic	Mesoproterozoic	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Mesoproterozoic
a2.1.2.1	Stenian	Mesoproterozoic	1200 - 1000	IUGS ICS Stratigraphic	Stenian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Stenian
a2.1.2.1.1	Stenian 2	Stenian	1130 - 1000	Koistinen et al., 2001.	Stenian2	urn:cgi:classifier:CGI:StratChart:2009:St
						enian2
a2.1.2.1.2	Stenian 1	Stenian	1200 - 1130	Koistinen et al., 2001.	Stenian1	urn:cgi:classifier:CGI:StratChart:2009:St
						enian1
a2.1.2.2	Ectasian	Mesoproterozoic	1400 - 1200	IUGS ICS Stratigraphic	Ectasian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Ectasian
a2.1.2.2.1	Ectasian 4 *	Ectasian	1250 - 1200	Koistinen et al., 2001.	Ectasian4	urn:cgi:classifier:CGI:StratChart:2009:Ec
						tasian4

1G-EID	1G-ETerm	1G-E Broader	Definition (Ma)	Source	CGI_URN	Complete URN
		Concept				
a2.1.2.2.2	Ectasian 3 *	Ectasian	1270 - 1250	Koistinen et al., 2001.	Ectasian3	urn:cgi:classifier:CGl:StratChart:2009:Ec tasian3
a2.1.2.2.3	Ectasian 2 *	Ectasian	1360 - 1270	Koistinen et al., 2001.	Ectasian2	urn:cgi:classifier:CGl:StratChart:2009:Ec tasian2
a2.1.2.2.4	Ectasian 1 *	Ectasian	1400 - 1360	Koistinen et al., 2001.	Ectasian1	urn:cgi:classifier:CGl:StratChart:2009:Ec tasian1
a2.1.2.3	Calymmian	Mesoproterozoic	1600 - 1400	IUGS ICS Stratigraphic Chart, 2009.	Calymmian	urn:cgi:classifier:ICS:StratChart:200908: Calymmian
a2.1.2.3.1	Calymmian 4 *	Calymmian	1440 - 1400	Koistinen et al., 2001.	Calymmian4	urn:cgi:classifier:CGl:StratChart:2009:C alymmian4
a2.1.2.3.2	Calymmian 3 *	Calymmian	1470 - 1440	Koistinen et al., 2001.	Calymmian3	urn:cgi:classifier:CGl:StratChart:2009:C alymmian3
a2.1.2.3.3	Calymmian 2 *	Calymmian	1520 - 1470	Koistinen et al., 2001.	Calymmian2	urn:cgi:classifier:CGl:StratChart:2009:C alymmian2
a2.1.2.3.4	Calymmian 1 *	Calymmian	1600 - 1520	Koistinen et al., 2001.	Calymmian1	urn:cgi:classifier:CGl:StratChart:2009:C alymmian1
a2.1.3	Paleoproterozoic	Proterozoic	2500 - 1600	IUGS ICS Stratigraphic Chart, 2009.	Paleoproterozoic	urn:cgi:classifier:ICS:StratChart:200908: Paleoproterozoic
a2.1.3.1	Statherian	Paleoproterozoic	1800 - 1600	IUGS ICS Stratigraphic Chart, 2009.	Statherian	urn:cgi:classifier:ICS:StratChart:200908: Statherian
a2.1.3.1.1	Statherian 4 *	Statherian	1260 - 1600	Koistinen et al., 2001.	Statherian4	urn:cgi:classifier:CGl:StratChart:2009:St atherian4
a2.1.3.1.2	Statherian 3 *	Statherian	1740 - 1660	Koistinen et al., 2001.	Statherian3	urn:cgi:classifier:CGl:StratChart:2009:St atherian3
a2.1.3.1.3	Statherian 2 *	Statherian	1770 - 1740	Koistinen et al., 2001.	Statherian2	urn:cgi:classifier:CGl:StratChart:2009:St atherian2
a2.1.3.1.4	Statherian 1 *	Statherian	1800 - 1770	Koistinen et al., 2001.	Statherian1	urn:cgi:classifier:CGl:StratChart:2009:St atherian1
a2.1.3.2	Orosirian	Paleoproterozoic	2050 - 1800	IUGS ICS Stratigraphic Chart, 2009.	Orosirian	urn:cgi:classifier:ICS:StratChart:200908: Orosirian
a2.1.3.2.1	Orosirian 7 *	Orosirian	1820 - 1800	Koistinen et al., 2001.	Orosirian7	urn:cgi:classifier:CGl:StratChart:2009:Or osirian7
a2.1.3.2.2	Orosirian 6 *	Orosirian	1840 - 1820	Koistinen et al., 2001.	Orosirian6	urn:cgi:classifier:CGl:StratChart:2009:Or osirian6
		1			4	

1G-EID	1G-E Term	1G-E Broader Concept	Definition (Ma)	Source	CGI_URN	Complete URN
					osirian5	
a2.1.3.2.4	Orosirian 4 *	Orosirian	1880 - 1870	Koistinen et al., 2001.	Orosirian4	urn:cgi:classifier:CGI:StratChart:2009:Or
						osirian4
a2.1.3.2.5	Orosirian 3 *	Orosirian	1920 - 1880	Koistinen et al., 2001.	Orosirian3	urn:cgi:classifier:CGl:StratChart:2009:Or
						osirian3
a2.1.3.2.6	Orosirian 2 *	Orosirian	1960 - 1920	Koistinen et al., 2001.	Orosirian2	urn:cgi:classifier:CGl:StratChart:2009:Or
						osirian2
a2.1.3.2.7	Orosirian 1 *	Orosirian	2050 - 1960	Koistinen et al., 2001.	Orosirian1	urn:cgi:classifier:CGl:StratChart:2009:Or
						osirian1
a2.1.3.3	Rhyacian	Paleoproterozoic	2300 - 2050	IUGS ICS Stratigraphic	Rhyacian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Rhyacian
a2.1.3.4	Siderian	Paleoprotero zoic	2500 - 2300	IUGS ICS Stratigraphic	Siderian	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Siderian
a2.1.3.4.1	Siderian 2 *	Siderian	2400 - 2300	Koistinen et al., 2001.	Siderian2	urn:cgi:classifier:CGl:StratChart:2009:Si
						derian2
a2.1.3.4.2	Siderian 1 *	Siderian	2500 - 2400	Koistinen et al., 2001.	Siderian1	urn:cgi:classifier:CGl:StratChart:2009:Si
						derian1
a2.2	Archean	Precambrian	4000 - 2500	IUGS ICS Stratigraphic	Archean	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Archean
a2.2.1	Neoarchean	Archean	2800 - 2500	IUGS ICS Stratigraphic	Neoarchean	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Neoarchean
a2.2.1.1	Neoarchean 2 *	Neoarchean	2650 - 2500	Koistinen et al., 2001.	Neoarchean2	urn:cgi:classifier:CGl:StratChart:2009:N
						eoarchean2
a2.2.1.2	Neoarchean 1 *	Neoarchean	2800 - 2650	Koistinen et al., 2001.	Neoarchean1	urn:cgi:classifier:CGl:StratChart:2009:N
						eoarchean1
a2.2.2	Mesoarchean	Archean	3200 - 2800	IUGS ICS Stratigraphic	Mesoarchean	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Mesoarchean
a2.2.3	Paleoarchean	Archean	3600 - 3200	IUGS ICS Stratigraphic	Paleoarchean	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Paleoarchean
a2.2.4	Eoarchean	Archean	4000 - 3600	IUGS ICS Stratigraphic	Eoarchean	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Eoarchean
a2.3	Hadean (informal)	Precambrian	4600 - 4000	IUGS ICS Stratigraphic	Hadean	urn:cgi:classifier:ICS:StratChart:200908:
				Chart, 2009.		Hadean

4.2 Lithology

Following the CGI/GeoSciML schema, lithology is divided into Igneous Material, Sedimentary Material, and Composite Genesis Material. For 1G-E two additional categories, Breccia and Tuffite, were added. The definitions of the terms are kept as close as possible to the existing IUGS definitions (LeMaitre et al., 2002 for igneous rocks and Fettes & Desmons, 2007 for metamorphic rocks) and the CGI SimpleLithology vocabulary, with slight modification to the definitions for GeoSciML when considered appropriate. The hierarchy of the terms was also defined on the basis of the CGI SimpleLithology vocabulary.

In GeoSciML the lithology of GeologicUnits is described using the option CompositionParts. Each CompositionPart has three properties – the lithology; the role of the CompositionPart in the GeologicUnit as a whole; and the proportion of the CompositionPart in the GeologicUnit as a whole.

The tables 4-5, 4-6, 4-7 and 4-8 give the definitions and corresponding URNs which have to be used to populate the lithology property. To determine the correct lithology concept, one should focus on the concept definition rather than the concept term.

Some terms, which are commonly used as lithologies, such as 'ophiolite', are in fact a combination of lithology, genesis and other concepts. Section 4.6 describes how to encode such complex rocks.

With the role property of CompositionPart (GeologicUnitPartRole), it is possible to state, whether the GeologicUnit consists of only one type of lithology or if it comprises additional units, e.g. a 'lithosome' or 'cyclic bedding'. For 1GE, due to both the scale of the maps and the harmonisation, the role property should in most cases be restricted to one of two values: 'only_part' (the CompositionPart is the only one in the GeologicUnit) or 'unspecified_part_role' (the CompositionPart is one of several in the GeologicUnit) (tab. 4-4). Additional values like 'inclusion', 'lithosome' or 'blocks' should only be used for the description of the complex rocks (see section 4.6).

In GeoSciML one can describe a GeologicUnit with more than one lithological term. To emphasise the predominant lithology the proportion property of CompositionPart (ProportionTerm) is used. When only one lithology is selected that covers the whole GeologicUnit, the ProportionTerm should be set to 'all'.

For heterogeneous GeologicUnits the lithology that comprises the single largest proportion of the GeologicUnit should be given a ProportionTerm of 'predominant'. The predominant lithology will be the one used for portrayal of the GeologicUnit. It is possible to add four additional lithological terms to the CompositionPart; all these should be given the ProportionTerm of 'subordinate'. Table 4-3 shows the complete hierarchy of ProportionTerms of GeoSciML. For 1G-E only the three terms 'all', 'predominant' and 'subordinate' are used.

Note that additional information on the lithology of a GeologicUnit beyond CompositionPart can be provided with the properties GeologicEvents (age, process, and environment; see sections 4.1 and 4.4) and MetamorphicDescription (facies, grade, and protolith; see section 4.5).

1G-E ID	1G-E	1G-E	Definition	Source	CGI_URN	Complete URN
	Term	Broader Concept				
pt1	major		Component constitutes greater than 50 % of the volume of the described	CGI/GeoSciML.	major	urn:cgi:classifier:CGl:Proportio nTerm:201001:major
pt1.1	dominant	major	Component constitutes greater than 75 % of the volume of the EarthMaterial.	CGI/GeoSciML.	dominant	urn:cgi:classifier:CGl:Proportio nTerm:201001:dominant
pt1.1.1	all	dominant	Component constitutes effectively 100 % of the volume of the EarthMaterial.	CGI/GeoSciML.	all	urn:cgi:classifier:CGl:Proportio nTerm:201001:all
pt2	present		Component is present, but proportion is unknow n.	CGI/GeoSciML.	present	urn:cgi:classifier:CGI:Proportio nTerm:201001:present
pt2.1	predomin ant	present	Constituent forms more of the described entity than any other constituent.	CGI/GeoSciML.	predominant	urn:cgi:classifier:CGl:Proportio nTerm:201001:predominant
pt3	subordin ate		Component constitutes less than 50 % of the volume of the described entity. Synonym: inferior,	CGI/GeoSciML.	subordinate	urn:cgi:classifier:CGI:Proportio nTerm:201001:subordinate

Table 4-3: The GeoSciML vocabulary for the description of the ProportionTerm of GeologicUnit; for 1G-E only the three terms 'all', 'predominant' and 'subordinate' are used.

1G-EID	1G-E 1G-E		Definition	Source	CGI_URN	Complete URN	
	Term	Broader			_		
		Concept					
gupr1	Part of		The geologic unit part role is not know n in any greater detail. Inclusion of	CGI/	part_of	urn:cgi:classifier:CGI:GeologicUnitPart	
			only_part as a separate concept implies that this concept is the	GeoSciML.		Role:200811:part_of	
			equivalent of 'proper part' in mereology. Synonym: unknow n.				
gupr1.1	Inclusion	part_of	Geologic unit constituent is present as masses with generally sharp	CGI/	inclusion	urn:cgi:classifier:CGI:GeologicUnitPart	
			boundaries enclosed within a matrix of some other material.	GeoSciML.		Role:200811:inclusion	
gupr1.1.1	Blocks	inclusion	Geologic unit constituent is present as masses with generally sharp	CGI/	blocks	urn:cgi:classifier:CGI:GeologicUnitPart	
			boundaries and block-like geometry within a matrix of some other	GeoSciML.		Role:200811:blocks	
			material emplaced by processes at the earth's surface, e.g. volcanic				
			eruption or mass wasting. Implication is that blocks were derived from				
			the same source geologic unit and emplaced in the described unit.				
gupr1.2	Lithosome	part_of	A kind of rock body that has multiple occurrences in a single geologic	CGI	lithosome	urn:cgi:classifier:CGI:GeologicUnitPart	
			unit. A mass of rock of uniform character, characterised by geometry,	GeoSciML.		Role:200811:lithosome	
			composition, and internal structure. Generally denotes rock mass that is				
			the product of a particular rock forming process or related sequence of				
			processes in the containing unit, e.g. bouma sequence, point bar				
			sequence. A particular lithosome may be characterized by the presence				
			of blocks, but blocks are not treated as kinds of lithosome because the				
			internal character of the blocks is determined by a separate genetic				
			sequence from the described unit.*				
• ·	- ,	lithosome	Lithosome characterised by an internal sequence of units, which is	CGV	cyclic_bedding_package	urn:cgi:classifier:CGI:GeologicUnitPart	
	bedding		repeated in a stacked sequence e.g. fining-upw ard sequence,	GeoSciML.		Role:200811:cyclic_bedding_package	
	package		thickening upw ard sequence, bouma sequence.				
gupr1.2.2	-	lithosome	Lithosome in a geologic unit that is generally interstitial to other	CGI	geologic_unit_matrix	urn:cgi:classifier:CGI:GeologicUnitPart	
	unit matrix		constituents, e.g. in a mass w asting deposit, melange, tuff breccia.	GeoSciML.		Role:200811:geologic_unit_matrix	
gupr1.2.3	Layer	lithosome		CGI	layer_lithosome	urn:cgi:classifier:CGI:GeologicUnitPart	
	lithosome		alternating with other constituents.	GeoSciML.		Role:200811:layer_lithosome	
U 1	•	part_of	Geologic unit part with unspecified role; used in normative descriptions	CGI	unspecified_part_role	urn:cgi:classifier:CGI:GeologicUnitPart	
	d part role		w hen any role is allow ed.	GeoSciML.		Role:200811:unspecified_part_role	
gupr2	Only part		The entire described unit consists of a single part or constituent.	CGI/	only_part	urn:cgi:classifier:CGI:GeologicUnitPart	
			Synonym: dominant constituent, w hole.	GeoSciML.		Role:200811:only_part	

Table 4-4: The 1G-E vocabulary for the description of the role property of GeologicUnit

* This vocabulary generalises the concept defined in Neuendorf et al. (2005) to include bodies of igneous or metamorphic rock as well as sedimentary rock. SLTT (2004) used the term 'lithotope' with similar meaning for sedimentary rocks.

4.2.1 Igneous material

Igneous material comprises Fragmental igneous material and Igneous rocks (fig. 4-4). Following LeMaitre et al. (2002), Fragmental igneous material is divided into Unconsolidated pyroclastic material (e.g. Tephra) and Pyroclastic rocks, according to variation in clast size. As Breccia and Tuffite are special types, these lithologies are treated separately (see sections 4.2.4 and 4.2.5).

For Igneous rocks there are numerous classification systems, and most of them are based on geochemistry. The most commonly used, however, is the IUGS ("Streckeisen")classification, based on the modal amounts of the common minerals which are divided into five groups: Q-Quartz, A-Alkali feldspar, P-Plagioclase, F-Feldspathoids and M-Mafic minerals. The Q-A-F-P Double Triangles Diagram for Plutonites (Streckeisen, 1976, Annex II), and Volcanites (Streckeisen, 1978, Annex II) used by LeMaitre et al. (2002) are a comprehensive and appropriate nomenclature and classification of igneous rocks for the use by 1G-E. However, the descriptive, non-genetic terms "Phaneritic crystalline igneous rock" and "Fine-grained crystalline igneous rock" are used instead of plutonic and volcanic rocks, respectively. The separating grain-size is taken to be 1 mm. Another difference to the IUGS classification is a new meaning for certain terms that were considered useful in the classification of the igneous rocks: e.g. Dioritic rock is a subtype of Dioritoid rather than a synonym.

Table 4-5 shows the agreed terms, their definitions and URNs for Igneous material.

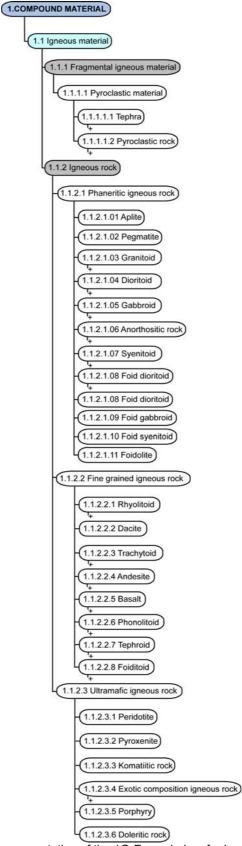


Figure 4-4: Hierarchical overview representation of the 1G-E vocabulary for Igneous material. For clarity only the main groups are indicated.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.	Compound material		An Earth Material composed of an aggregation of particles of Earth Material, possibly including other Compound Materials. This is 'top' of lithology category hierarchy, and should be used to indicate any rock or unconsolidated	SLTT, 2004 ¹ .	compound_material	urn:cgi:classifier:CGl:SimpleLithology: 201001:compound_material
1.1	Igneous material	compound _material	material. Earth material formed as a result of igneous processes, e.g. intrusion and cooling of magma in the crust, volcanic eruption.	CGI SimpleLithology, 2010.	igneous_material	urn:cgi:classifier:CGI:SimpleLithology: 201001:igneous_material
1.1.1	Fragmental igneous material	igneous _material	Igneous material of unspecified consolidation state in w hich greater than 75 % of the rock consists of fragments produced as a result of igneous rock-forming process.	CGI SimpleLithology, 2010.	fragmental_igneous_ material	urn:cgi:classifier:CGl:SimpleLithology: 201001:fragmental_igneous_material
1.1.1.1	Pyroclastic material	fragmental _igneous material	Fragmental igneous material that consists of more than 75 % of particles formed by disruption as a direct result of volcanic action.	LeMaitre et al., 2002.	pyroclastic_material	urn:cgi:classifier:CGI:SimpleLithology: 201001:pyroclastic_material
1.1.1.1.1	Tephra	 material	Unconsolidated pyroclastic material in w hich greater than 75 % of the fragments are deposited as a direct result of volcanic processes and the deposit has not been rew orked by epiclastic processes. Includes ash, lapilli tephra, bomb tephra, block tephra and unconsolidated agglomerate.	Hallsw orth & Knox, 1999; LeMaitre et al., 2002.	tephra	urn:cgi:classifier:CGI:SimpleLithology: 201001:tephra
1.1.1.1.1.1	Ash and lapilli	tephra	Tephra in w hich less than 25 % of fragments are greater than 64 mm in longest dimension.	Schmid, 1981; LeMaitre et al., 2002.	ash_and_lapilli	urn:cgi:classifier:CGI:SimpleLithology: 201001:ash_and_lapilli
1.1.1.1.1.2	Ash breccia, bomb, or block tephra	tephra	Tephra in which more than 25 % of particles are greater than 64 mm in largest dimension. Includes ash breccia, bomb tephra and block tephra of Gillespie and Styles (1999).	Schmid 1981; LeMaitre et al., 2002.	ash_breccia_bomb_o r_block_tephra	urn:cgi:classifier:CGI:SimpleLithology: 201001:ash_breccia_bomb_or_block _tephra
1.1.1.1.2	Pyroclastic rock	pyroclastic _material	Fragmental igneous rock that consists of greater than 75 % fragments produced as a direct result of eruption or extrusion of magma from within the earth onto its surface. Includes autobreccia associated with lava flow s. Excludes deposits rew orked by epiclastic processes.	LeMaitre et al., 2002.	pyroclastic_rock	urn:cgi:classifier:CGl:SimpleLithology: 201001:pyroclastic_rock

Table 4-5: The 1G-E vocabulary for Igneous material.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.1.1.1.2.1	Ash tuff,	pyroclastic	Pyroclastic rock in which less than 25 % of rock by	Schmid, 1981;	ash_tuff_lapillistone_	urn:cgi:classifier:CGI:SimpleLithology:
	lapillistone,	_rock	volume are more than 64 mm in longest diameter. Includes	LeMaitre et al., 2002.	and_lapilli_tuff	201001:ash_tuff_lapillistone_and_lapi
	and lapilli tuff		tuff, lapilli tuff, and lapillistone.			lli_tuff
1.1.1.1.2.2	Tuff-breccia,	pyroclastic	Pyroclastic rock in which greater than 25 % of particles	Schmid, 1981;		urn:cgi:classifier:CGl:SimpleLithology:
	agglomerate,	_rock	are greater than 64 mm in largest dimension. Includes	LeMaitre et al., 2002.	rate_or_pyroclastic_	201001:tuff_breccia_agglomerate_or
	or pyroclastic		agglomerate, pyroclastic breccia of Gillespie and Styles		breccia	_pyroclastic_breccia
	breccia		(1999).			
1.1.2	Igneous rock	igneous	Rock formed as a result of igneous processes, e.g.	Neuendorf et al.,	igneous_rock	urn:cgi:classifier:CGI:SimpleLithology:
		_material	intrusion and cooling of magma in the crust, volcanic	2005.		201001:igneous_rock
			eruption.			
1.1.2.1	Phaneritic	igneous_rock	Igneous rock in which the framew ork of the rock consists	Neuendorf et al.,	phaneritic_igneous_r	urn:cgi:classifier:CGI:SimpleLithology:
	igneous rock		of individual crystals that can be discerned with the	2005.	ock	201001:phaneritic_igneous_rock
			unaided eye. Bounding grain size is on the order of 32 to			
			100 µm. Excludes igneous rocks with 'exotic' composition.			
			Synonym: coarse grained crystalline igneous rock,			
			plutonic rock.			
1.1.2.1.01	Aplite	phaneritic	Light coloured crystalline rock, characterized by a fine	Neuendorf et al.,	aplite	urn:cgi:classifier:CGl:SimpleLithology:
		_igneous_rock	grained allotriomorphic-granular (aplitic, saccharoidal or	2005.		201001:aplite
			xenomorphic) texture; typically granitic composition,			
			consisting of quartz, alkali feldspar and sodic plagioclase.			
1.1.2.1.02	Pegmatite	phaneritic	Exceptionally coarse grained crystalline rock with	Neuendorf et al.,	pegmatite	urn:cgi:classifier:CGI:SimpleLithology:
	0	ianeous rock	interlocking crystals; most grains are 1 cm or more in	2005.		201001:pegmatite
			diameter; composition is generally that of granite, but the			1.0
			term may refer to the coarse grained facies of any type			
			of igneous rock; usually found as irregular dikes, lenses,			
			or veins associated with plutons or batholiths.			
1.1.2.1.03.1	Granite	granitoid	Phaneritic crystalline rock consisting of guartz, alkali	LeMaitre et al., 2002.	granite	urn:cgi:classifier:CGI:SimpleLithology:
		ľ	feldspar and plagioclase (typically sodic) in variable		Ĭ	201001:granite
			amounts, usually with biotite and/or hornblende. Includes			
			rocks defined modally in QAPF Field 3. SeeAlso:			
			charnockite.			

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
11210311	Monzogranite	granite	Granite that has a plagiolcase to total feldspar ratio	LeMaitre et al., 2002.	monzogranite	urn:cqi:classifier:CGI:SimpleLithology:
1.1.2.1.00.1.1	Worlzogranite	granice	betw een 0.35 and 0.65. QAPF field 3b.			201001:monzogranite
1.1.2.1.03.1.2	Syenogranite	granite	Granite that has a plagiolcase to total feldspar ratio	LeMaitre et al., 2002.	syenogranite	urn:cgi:classifier:CGI:SimpleLithology:
			betw een 0.10 and 0.35. QAPF field 3a.			201001:syenogranite
1.1.2.1.03.2	Tonalite	granitoid	Granitoid consisting of quartz and intermediate	LeMaitre et al., 2002.	tonalite	urn:cgi:classifier:CGI:SimpleLithology:
			plagioclase, usually with biotite and amphibole. Includes			201001:tonalite
			rocks defined modally in QAPF field 5; ratio of plagioclase			
			to total feldspar is greater than 0.9. SeeAlso:			
			plagiogranite, trondhjemite.			
1.1.2.1.03.3	Granodiorite	granitoid	Phaneritic crystalline rock consisting essentially of quartz,	LeMaitre et al., 2002.	granodiorite	urn:cgi:classifier:CGI:SimpleLithology:
			sodic plagioclase and lesser amounts of alkali feldspar			201001:granodiorite
			w ith minor hornblende and biotite. Includes rocks defined			
			modally in QAPF field 4.			
1.1.2.1.04	Dioritoid	phaneritic	Phaneritic crystalline igneous rock with M less than 90;	LeMaitre et al., 2002.	dioritoid	urn:cgi:classifier:CGI:SimpleLithology:
		_igneous_rock	consisting of intermediate plagioclase, commonly with			201001:dioritoid
			hornblende and often with biotite or augite. Plagioclase to			
			total feldspar ratio is greater that 0.65; and anorthite			
			content of plagioclase is less than 50 %. Less than 10 %			
			feldspathoid mineral and less than 20 % quartz in the			
			QAPF fraction. Includes rocks defined modally in QAPF			
			fields 9 and 10 (and their subdivisions). Related Concept:			
			doleritic_rock.			
1.1.2.1.04.1	Dioritic rock	dioritoid	Phaneritic crystalline rock with Mless than 90, consisting	LeMaitre et al., 2002.	dioritic_rock	urn:cgi:classifier:CGI:SimpleLithology:
			of intermediate plagioclase, commonly with hornblende			201001:dioritic_rock
			and often w ith biotite or augite. A dioritoid w ith a			
			plagioclase to total feldspar ratio (in the QAPF fraction)			
			greater than 0.9. Includes rocks defined modally in QAPF			
			fields 10, 10' and 10*.			
1.1.2.1.04.1.1	Quartz diorite	dioritic_rock	Dioritic rock that contains betw een 5 to 20 % quartz in the	LeMaitre et al. 2002	quartz_diorite	urn:cgi:classifier:CGI:SimpleLithology:
			QAPF fraction. QAPF field 10*.			201001:quartz_diorite

_igneous_rock 90 % mafic minerals, and up to 20 % quartz or up to 10 % 201001:gabbroid feldspathoid in the QAPF fraction. The ratio of plagioclase feldspathoid in the QAPF fraction. The ratio of plagioclase 201001:gabbroid to total feldspar is greater than 0.65, and anorthite content of the plagioclase is greater than 50 %. Includes rocks defined modally in QAPF fields 9 and 10 and their subdivisions. Related Concept: dolertitic_rock.	1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
Image: Section of the section of th			Concept				
Image: Section of the section of th	11210112	Diarita	diaritia rook	Phonositio envotelling reals consisting of intermediate	LaMaitra at al. 2002	diarita	
Image: Section of the section is between 0 and 5% quarts. Includes rocks defined modally in QAFF field 10 as diorite.CGI SimpleLithology. 2008; LeMaire et al., 2002.monzodioritic_rockum:cgi:classifier:CGI:SimpleLithology: 20101:monzodioritic_rock1.1.2.1.04.2MonzodioriticdioritoidPhaneritic crystalline igneous rock consisting of sodic plagioclase (An0 to An50), alkali feldspar, hornblende and biotite, with or without pyroxene, and 0 to 10% redspathoid or 0 to 20 % quarts. In the QAFF fraction. Plagioclase to total feldspar ratio in the QAFF fraction. Plagioclase to total feldspar ratio in the QAFF fraction. Plagioclase to total feldspar ratio in the QAFF fraction. Plagioclase (An0 to An50), alkali feldspar, hornblende and biotite, with or without pyroxene, and 0 to 10% plagioclase (An0 to An50), alkali feldspar, hornblende and biotite, with or without pyroxene, and 0 to 5% quarts. the duarts fraction is defined modaly in QAFF field 9.CGI SimpleLithology. 2002.monzodiorite_rockum:cgi:classifier:CGI:SimpleLithology: 201001:monzodiorite_rock1.1.2.1.04.2.1Monzodiorite rockmonzodiorite, and quarts monzodiorite, and quarts monzodiorite. plagioclase (An0 to An50), alkali feldspar, hornblende and biotite, with or without pyroxene, and 0 to 5% quarts. Includes rocks defined modaly in QAFF field 9.LeMaitre et al., 2002.monzodioriteum:cgi:classifier:CGI:SimpleLithology: 201001:monzodiorite1.1.2.1.05.1Gabbroidphaneritic crystalline igneous rock that contain less to no subdivisions. Related Concept: dolerittic_rock.LeMaitre et al., 2002.gabbroidum:cgi:classifier:CGI:SimpleLithology: 201001:gabbroid1.1.2.1.05.1 <td< td=""><td>1.1.2.1.04.1.2</td><td>Dionte</td><td>aloritic_rock</td><td></td><td>Leiviaitre et al., 2002.</td><td>diorite</td><td></td></td<>	1.1.2.1.04.1.2	Dionte	aloritic_rock		Leiviaitre et al., 2002.	diorite	
Internationalplagioclass (An 0 to An50), no feldspathold, and betw een 0 and 5 % quartz. Includes rocks defined modally in QAFF field 10 as d 5% quartz. Includes rocks defined modally in QAFF field 10 as diorite.CGI SimpleLithology. 2008; LeWaitre et al., 2008; LeWaitre et al., 2002.mnzodioritic_rockurn:cgicclassifier:CGI:SimpleLithology: 20101:mnzodioritic_rock1.1.2.1.04.2Monzodiritiedioritolite, with or without pyroxene, and 0 to 10 % feldspathoid or 0 to 20 % quartz in the QAFF fraction is betw een 0.65 and 0.9. Includes rocks defined modally in QAFF field 9. 9° and 9° as monzodiorite, includes rocks defined modally in QAFF field 9.CGI SimpleLithology. 2008; LeWaitre et al., 2002.mnzodioritic_rockurn:cgicclassifier:CGI:SimpleLithology: 20101:mnzodioritic_rock1.1.2.1.04.2.1Monzodirite monzodioritemonzodiorite, and quartz monzodiorite, includes rocks defined modally in QAFF field 9.LeMaitre et al., 2002. gaptorizes (An 0 to An50), alkali feldspar, hornblende and biotite, with or without pyroxene, and 0 to 5 % quartz. Includes rocks defined modally in QAFF field 9.LeMaitre et al., 2002. gabbroidmnzodiorite1.1.2.1.05Gabbroidphaneritic -gapciclass (An 0 to An50), alkali feldspar, ratio or plagioclase biotali in CQAFF field 9.LeMaitre et al., 2002. gabbroidgabbroid1.1.2.1.05.1Gabbroidphaneritic -gapciclass is greater than 0.65, and anorthise content of the plagioclass is greater than 0.65, net and and their sudvisions. Related Concept: doleritic_rock.LeMaitre et al., 2002. gabbroidgabbroidurn:cgicclassifier:CGI:SimpleLithology: 20101:gabbroid_rock1.1.2.1.05.1Gabbroic rock, gab							201001:0001
Image: Section of the section of th				0			
Image: space s							
1.1.2.1.04.2 Monzodioritic rock dioritoid Phaneritic crystalline igneous rock consisting of sodic plagioclase (AN0 to An50), alkali feldspar, hormblende and biotite, with or without pyroxene, and 0 to 10 % feldspathoid or 0 to 20 % quartz in the QAPF fraction. Pagioclase to total feldspar ratio in the QAPF fraction is betw even 0.65 and 0.9. Includes rocks defined modally in QAPF field 9, 9' and 9* as monzodiorite, foid-beaing monzodiorite. CGI SimpleLithology, 2003. LeMaitre et al., 2002. um::cgi:classifier:CGI:SimpleLithology: 201001:monzodioritic_rock 1.1.2.1.04.2.1 Monzodiorite plagioclase (An0 to An50), alkali feldspar, hormblende and biotite, with or without pyroxene, and 0 to 5 % quartz. Includes rocks defined modally in QAPF field 9. LeMaitre et al., 2002. monzodiorite um::cgi:classifier:CGI:SimpleLithology: 201001:monzodiorite 1.1.2.1.05 Gabbroid phaneritic gneous_rock Phaneritic crystalline igneous rock to consisting of sodic plagioclase (An0 to An50), alkali feldspar, hormblende and biotite, with or without pyroxene, and 0 to 5 % quartz. Includes rocks defined modally in QAPF field 9. LeMaitre et al., 2002. monzodiorite um::cgi:classifier:CGI:SimpleLithology: 201001:monzodiorite 1.1.2.1.05.1 Gabbroid phaneritic gabbroid maneritic crystalline igneous rock that contains less than of the plagioclase is greater than 0.65, and anorthite content of the plagioclase is greater than 0.65, and anorthite content of the plagioclase is greater than 0.65, and anorthite content of the plagioclase to total feldspar ratio greater than 0.91 in the CAPF fraction. Includes CAS gabbroid LeMaitre et al., 2002. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
rockplagioclase (An 0 to An50), alkali feldspar, hornblende and biotite, with or without pyroxene, and 0 to 10 % feldspathoid or 0 to 20 % quartz in the CAPF fraction. Pagioclase to total feldspar ratio in the CAPF fraction. Pagioclase to total feldspar ratio in the CAPF fraction. Pagioclase to total feldspar ratio in the CAPF fraction. Pagioclase (An 0 to An50), alkali feldspar, ratio in the CAPF fraction. Pagioclase to total feldspar ratio in the CAPF fraction. Pagioclase (An 0 to An50), alkali feldspar, romblende and biotite, with or without pyroxene, and 0 to 10 %2008; LeMaitre et al., 2002.20101::::::::::::::::::::::::::::::::::		N.A. 12 141					
Image: biolite, with or without pyroxene, and 0 to 10 % feldspathoid or 0 to 20 % quartz in the OAFF fraction. Pagioclase to total feldspar ratio induces rocks defined modally in QAFF field 9, 9' and 9' as monzodiorite, fold-beaing monzodiorite, and quartz monzodiorite, fold-beaing monzodiorite, and quartz monzodiorite.2002.1.1.2.1.04.2.1Monzodiorite monzodioritemonzodiorite, original gram on zodiorite, fold-beaing monzodiorite, and quartz monzodiorite, fold-beaing monzodiorite, and quartz monzodiorite.LeMaitre et al., 2002.monzodiorite monzodioriteurn:cgicclassifier:CGI:SimpleLithology: 201001:monzodiorite 201001:monzodiorite1.1.2.1.05.1Gabbroidphaneritic igneous_rockmaneritic crystalline igneous rock that contains less than igneous_rock and up to 20 % quartz or up to 10 % feldspar is greater than 0.65, and anorthite content of the plagioclase to total feldspar ratio subdivisions. Related Concept: doleritic_rock.LeMaitre et al., 2002.gabbroidgabbroidurn:cgicclassifier:CGI:SimpleLithology: 201001:monzodiorite1.1.2.1.05.1Gabbroic rockBasic_igneousGabbroid that has a plagioclase to total feldspar ratio subdivisions. Related Concept: doleritic_rock.LeMaitre et al., 2002.gabbroid_crockurn:cgicclassifier:CGI:SimpleLithology: 201001:gabbroid1.1.2.1.05.1Gabbroid miter tange of the plagioclase to total feldspar ratio subdivisions. Related Concept: doleritic_rock.LeMaitre et al., 2002.gabbroic_rockurn:cgicclassifier:CGI:SimpleLithology: 201001:gabbroid_reck1.1.2.1.05.1Gabbroid roc k gabbroidGabbroid file in LeAMF fraction. Includes OCAPF fields 10*, 10, and 10*. This category includes the various 	1.1.2.1.04.2		dioritoid			monzodioritic_rock	
Image: series of the series		rock					201001:monzodioritic_rock
Image: series of the series					2002.		
between 0.65 and 0.9. Includes rocks defined modally in QAFF field 9, 9' and 9° as monzodiorite, foid-beaing monzodiorite, and quartz monzodiorite, foid-beaing monzodiorite, and quartz monzodiorite.Image: Comparison of the comp							
APP field 9, 9' and 9' as monzodiorite, foid-beaing monzodiorite, and quartz monzodiorite.LeMaitre et al., 2002.monzodioriteurn:cgi:classifier:CGI:SimpleLithology: 201001:monzodiorite1.1.2.1.04.2.1Monzodioritemonzodiorite.Phaneritic crystalline igneous rock consisting of sodic plagioclase (An0 to An50), alkali feldspar, hornblende and biotite, with or without pyroxene, and 0 to 5 % quartz. Includes rocks defined modally in QAPF field 9.LeMaitre et al., 2002.monzodioriteurn:cgi:classifier:CGI:SimpleLithology: 201001:monzodiorite1.1.2.1.05Gabbroidphaneritic -gigneous_rockPhaneritic crystalline igneous rock that contains less than 90 % maric minerals, and up to 20 % quartz or up to 10 % feldspathoid in the QAPF fraction. The ratio of plagioclase to total feldspar is greater than 0.65, and anorthite content of the plagioclase is greater than 50 %. Includes rocks defined modally in QAPF field 9 and 10 and their subdivisions. Related Concept: dolentitic_rock.LeMaitre et al., 2002.gabbroidurn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroid1.1.2.1.05.1Gabbroic rockbasic_igneous -rock, gabbroidGabbroid that has a plagioclase to total feldspar ratio greater than 0.9 in the QAPF fraction. Includes QAPF gabbroidLeMaitre et al., 2002.gabbroic_rockurn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroic_rock1.1.2.1.05.1Gabbroic rockbasic_igneous -rock, gabbroidGabbroid that has a plagioclase to total feldspar ratio net (2002) based on the quarty not subdivided based on the quartz/feldspatholid content. SeeAlso: gabbro (sensuLeMaitre et al., 2002.gabbroic_rockurn:cgi:classifier:CGI:SimpleLithology: 2				-			
Image: series of the series				, , , , , , , , , , , , , , , , , , ,			
1.1.2.1.04.2.1 Monzodiorite monzodiorite monzodiorite Phaneritic crystalline igneous rock consisting of sodic plagioclase (An0 to An50), alkali feldspar, hornblende and biotite, with or without pyroxene, and 0 to 5 % quartz. Includes rocks defined modally in QAPF field 9. LeMaitre et al., 2002. monzodiorite urn:cgi:classifier:CGI:SimpleLithology: 201001:monzodiorite 1.1.2.1.05 Gabbroid phaneritic phaneritic Phaneritic crystalline igneous rock that contains less than 1/2 (greeus_rock affied spathoid in the QAPF fraction. The ratio of plagioclase to total feldspar is greater than 0.65, and anorthite content of the plagioclase is greater than 0.65, and anorthite content of the plagioclase is greater than 0.65, and anorthite content of the plagioclase is greater than 0.65, and anorthite content of the plagioclase is greater than 0.65, and anorthite content of the plagioclase is greater than 0.9 m. Includes rocks LeMaitre et al., 2002. gabbroid urn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroid 1.1.2.1.05.1 Gabbroic rock basic_igneous _rock, gabbroid Gabbroid that has a plagioclase to total feldspar ratio greater than 0.9 in the QAPF fraction. Includes QAPF fields 10°, 10, and 10°. This category includes the various categories defined in LeMaitre et al. (2002) based on the mafic mineraloy, but apparently not subdivided based on the quartz/feldspathoid content. SeeAlso: gabbro (sensu LeMaitre et al., 2002. gabbroic_rock urn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroic_rock 1.1.2.1.05.1 Gabbroic rock basic_igneous _rock, gabbroid Gabbroi							
rockplagioclase (An0 to An50), alkali feldspar, hornblende and biotite, with or without pyroxene, and 0 to 5 % quartz. Includes rocks defined modally in QAPF field 9.LeMaitre et al., 2002.gabbroidurn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroid1.1.2.1.05Gabbroidphaneritic -igneous_rockPhaneritic crystalline igneous rock that contains less than -igneous_rock of the plagioclase is greater than 0.65, and anorthite content of the plagioclase is greater than 0.65, and anorthite content of the plagioclase is greater than 0.65, and anorthite content of the plagioclase is greater than 0.65, and anorthite content of the plagioclase is greater than 0.65, and anorthite content of the plagioclase is greater than 0.65, and anorthite content of the plagioclase is greater than 0.65, and anorthite content of the plagioclase is greater than 0.90 in the QAPF fraction. Includes procks greater than 0.9 in the QAPF fraction. Includes QAPF fields 10°, 10, and 10°. This category includes the various categories defined in LeMaitre et al. (2002) based on the mafic mineralogy, but apparently not subdivided based on the quartz/feldspathoid content. SeeAlso: gabbro (sensuLeMaitre et al., 2002.gabbroic_rockurn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroic_rock							
biolite, with or without pyroxene, and 0 to 5 % quartz. Includes rocks defined modally in QAPF field 9.LeMaitre et al., 2002.gabbroidurn:cg:classifier:CGI:SimpleLithology: 201001:gabbroid1.1.2.1.05Gabbroidphaneritic _igneous_rockPhaneritic crystalline igneous rock that contains less than 0 % mafic minerals, and up to 20 % quartz or up to 10 % feldspathoid in the QAPF fraction. The ratio of plagioclase to total feldspar is greater than 0.65, and anorthite content of the plagioclase is greater than 0.65, and anorthite content subdivisions. Related Concept: dolertitic_rock.LeMaitre et al., 2002.gabbroidurn:cg:classifier:CGI:SimpleLithology: 201001:gabbroid1.1.2.1.05.1Gabbroic rock gabbroidbasic_igneous _rock, gabbroidGabbroid that has a plagioclase to total feldspar ratio greater than 0.9 in the QAPF fraction. Includes QAPF fraction. Includes QAPF fraction. Includes QAPF greater than 0.9 in the CAPF fraction. Includes QAPF fraction. Includes QAPF greater than 0.9 in the CAPF fraction. Includes QAPF fraction. Includes QAPF greater than 0.9 in the CAPF fraction. Includes QAPF fraction. Includes QAPF greater than 0.9 in the CAPF fraction. Includes QAPF greater than 0.9 in the CAPF fraction. Includes QAPF fields 10*, 10, and 10'. This category includes the various categories defined in LeMaitre et al. (2002) based on the marific mineralogy, but apparently not subdivided based on the quartz/feldspathoid content. SeeAlso: gabbro (sensuLeMaitre et al., 2002.gabbroic_rockurn:cg:classifier:CGI:SimpleLithology: 201001:gabbroic_rock	1.1.2.1.04.2.1	Monzodiorite	monzodioritic_	Phaneritic crystalline igneous rock consisting of sodic	LeMaitre et al., 2002.	monzodiorite	urn:cgi:classifier:CGl:SimpleLithology:
Image: series of the series			rock	plagioclase (An0 to An50), alkali feldspar, hornblende and			201001:monzodiorite
1.1.2.1.05 Gabbroid phaneritic _igneous_rock Phaneritic crystalline igneous rock that contains less than _igneous_rock LeMaitre et al., 2002. gabbroid urn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroid 1.1.2.1.05.1 Gabbroic rock basic_igneous _rock, gabbroid Basic_igneous _rock, gabbroid Gabbroid that has a plagioclase to total feldspar ratio greater than 0.9 in the QAPF fraction. Includes QAPF _subdivisions. Related Concept: doleritic_rock. LeMaitre et al., 2002. gabbroic_rock urn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroid 1.1.2.1.05.1 Gabbroic rock basic_igneous _rock, gabbroid Gabbroid that has a plagioclase to total feldspar ratio _rock, gabbroid LeMaitre et al., 2002. gabbroic_rock urn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroic_rock 1.1.2.1.05.1 Gabbroic rock basic_igneous _rock, gabbroid Gabbroid that has a plagioclase to total feldspar ratio _rock, gabbroid LeMaitre et al., 2002. gabbroic_rock urn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroic_rock				biotite, with or without pyroxene, and 0 to 5 % quartz.			
igneous_rock90 % mafic minerals, and up to 20 % quartz or up to 10 % feldspathoid in the QAPF fraction. The ratio of plagioclase to total feldspar is greater than 0.65, and anorthite content of the plagioclase is greater than 50 %. Includes rocks defined modally in QAPF fields 9 and 10 and their subdivisions. Related Concept: dolertitic_rock.201001:gabbroid201001:gabbroid1.1.2.1.05.1Gabbroic rock gabbroidbasic_igneous fields 10*, 10, and 10'. This category includes the various categories defined in LeMaitre et al. (2002) based on the mafic mineralogy, but apparently not subdivided based on the quartz/feldspathoid content. SeeAlso: gabbro (sensuLeMaitre et al., 2002.gabbroic_rockurn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroic_rock				Includes rocks defined modally in QAPF field 9.			
InterfactorFeldspathoid in the QAPF fraction. The ratio of plagioclase to total feldspar is greater than 0.65, and anorthite content of the plagioclase is greater than 50 %. Includes rocks defined modally in QAPF fields 9 and 10 and their subdivisions. Related Concept: dolertitic_rock.LeMaitre et al., 2002.gabbroic_rockurn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroic_rock1.1.2.1.05.1Gabbroic rock prock, gabbroidbasic_igneous fields 10*, 10, and 10'. This category includes the various categories defined in LeMaitre et al. (2002) based on the mafic mineralogy, but apparently not subdivided based on the quartz/feldspathoid content. SeeAlso: gabbro (sensuLeMaitre et al., 2002.gabbroic_rockurn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroic_rock	1.1.2.1.05	Gabbroid	phaneritic	Phaneritic crystalline igneous rock that contains less than	LeMaitre et al., 2002.	gabbroid	urn:cgi:classifier:CGI:SimpleLithology:
Image: hereto total feldspar is greater than 0.65, and anorthite content of the plagioclase is greater than 50 %. Includes rocks defined modally in QAPF fields 9 and 10 and their subdivisions. Related Concept: dolertitic_rock.Image: Rel			_igneous_rock	90 % mafic minerals, and up to 20 % quartz or up to 10 %			201001:gabbroid
of the plagioclase is greater than 50 %. Includes rocks defined modally in QAPF fields 9 and 10 and their subdivisions. Related Concept: dolertitic_rock.leMaitre et al., 2002.gabbroic_rockurn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroic_rock1.1.2.1.05.1Gabbroic rockbasic_igneous _rock, gabbroidGabbroid that has a plagioclase to total feldspar ratio greater than 0.9 in the QAPF fraction. Includes QAPF fields 10*, 10, and 10'. This category includes the various categories defined in LeMaitre et al. (2002) based on the mafic mineralogy, but apparently not subdivided based on the quartz/feldspathoid content. SeeAlso: gabbro (sensuLeMaitre et al., 2002.gabbroic_rockUrn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroic_rock				feldspathoid in the QAPF fraction. The ratio of plagioclase			
defined modally in QAPF fields 9 and 10 and their subdivisions. Related Concept: dolertitic_rock.leMaitre et al., 2002.gabbroic_rockurn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroic_rock1.1.2.1.05.1Gabbroic rockbasic_igneous greater than 0.9 in the QAPF fraction. Includes QAPF fields 10*, 10, and 10'. This category includes the various categories defined in LeMaitre et al. (2002) based on the mafic mineralogy, but apparently not subdivided based on the quartz/feldspathoid content. SeeAlso: gabbro (sensuLeMaitre et al., 2002.gabbroic_rockUrn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroic_rock				to total feldspar is greater than 0.65, and anorthite content			
Image: subdivision selected concept: dolertitic_rock.Image: subdivision selected concept: dolertiti				of the plagioclase is greater than 50 %. Includes rocks			
1.1.2.1.05.1 Gabbroic rock basic_igneous Gabbroid that has a plagioclase to total feldspar ratio LeMaitre et al., 2002. gabbroic_rock urn:cgi:classifier:CGI:SimpleLithology: 1.1.2.1.05.1 rock, greater than 0.9 in the QAPF fraction. Includes QAPF LeMaitre et al., 2002. gabbroic_rock urn:cgi:classifier:CGI:SimpleLithology: 201001:gabbroic_rock fields 10*, 10, and 10'. This category includes the various categories defined in LeMaitre et al. (2002) based on the he mafic mineralogy, but apparently not subdivided based on he quartz/feldspathoid content. SeeAlso: gabbro (sensu gabbro (sensu he mafic mineralogy he mafic miner				defined modally in QAPF fields 9 and 10 and their			
_rock, greater than 0.9 in the QAPF fraction. Includes QAPF gabbroid fields 10*, 10, and 10'. This category includes the various categories defined in LeMaitre et al. (2002) based on the mafic mineralogy, but apparently not subdivided based on the quartz/feldspathoid content. SeeAlso: gabbro (sensu 2010)				subdivisions. Related Concept: dolertitic_rock.			
gabbroid fields 10*, 10, and 10'. This category includes the various categories defined in LeMaitre et al. (2002) based on the mafic mineralogy, but apparently not subdivided based on the quartz/feldspathoid content. SeeAlso: gabbro (sensu	1.1.2.1.05.1	Gabbroic rock	basic_igneous	Gabbroid that has a plagioclase to total feldspar ratio	LeMaitre et al., 2002.	gabbroic_rock	urn:cgi:classifier:CGl:SimpleLithology:
categories defined in LeMaitre et al. (2002) based on the mafic mineralogy, but apparently not subdivided based on the quartz/feldspathoid content. SeeAlso: gabbro (sensu			_rock,	greater than 0.9 in the QAPF fraction. Includes QAPF			201001:gabbroic_rock
mafic mineralogy, but apparently not subdivided based on the quartz/feldspathoid content. SeeAlso: gabbro (sensu			gabbroid				
the quartz/feldspathoid content. SeeAlso: gabbro (sensu				categories defined in LeMaitre et al. (2002) based on the			
stricto), gabbronorite, norite, troctolite.				the quartz/feldspathoid content. SeeAlso: gabbro (sensu			
				stricto), gabbronorite, norite, troctolite.			

1G-EID	1G-ETerm	1G-E Broader Concept	Definition	Source	CGI_URN	Complete URN
1.1.2.1.05.1.1	Gabbro	gabbroic_rock	Gabbroic rock that contains betw een 0 and 5 % quartz and no feldspathoid mineral in the QAPF fraction. Includes rocks defined modally in QAPF Field 10 as gabbro.	LeMaitre et al., 2002.	gabbro	urn:cgi:classifier:CGl:SimpleLithology: 201001:gabbro
1.1.2.1.05.2	Monzogabbroic rock	gabbroid	Gabbroid with a plagioclase to total feldspar ratio betw een 0.65 and 0.9. QAPF field 9, 9' and 9*.	LeMaitre et al., 2002; CGI SimpleLithology, 2010.	monzogabbroic_rock	urn:cgi:classifier:CGl:SimpleLithology: 201001:monzogabbroic_rock
1.1.2.1.05.2.1	U U	monzogabbroi c_rock	Monzogabbroic rock that contains betw een 0 an 5 % quartz and no feldspathoid mineral in the QAPF fraction. Includes rocks defined modally in QAPF field 9.	LeMaitre et al. 2002, CGI SimpleLithology, 2010.	monzogabbro	urn:cgi:classifier:CGl:SimpleLithology: 201001:monzogabbro
1.1.2.1.06	Anorthositic rock	phaneritic _igneous_rock	Leucocratic phaneritic crystalline igneous rock consisting essentially of plagioclase, often with small amounts of pyroxene. By definition, colour index M is less than 10, and plagiclase to total feldspar ratio is greater than 0.9. Less than 20 % quartz and less than 10 % feldspathoid in the QAPF fraction. QAPF field 10, 10*, and 10'.	LeMaitre et al., 2002; CGI SimpleLithology, 2010.	anorthositic_rock	urn:cgi:classifier:CGI:SimpleLithology: 201001:anorthositic_rock
1.1.2.1.07	Syenitoid	phaneritic _igneous_rock	Phaneritic crystalline igneous rock with M less than 90, consisting mainly of alkali feldspar and plagioclase; minor quartz or nepheline may be present, along with pyroxene, amphibole or biotite. Ratio of plagioclase to total feldspar is less than 0.65, quartz forms less than 20 % of QAPF fraction, and feldspathoid minerals form less than 10 % of QAPF fraction. Includes rocks classified in QAPF fields 6, 7 and 8 and their subdivisions.	LeMaitre et al., 2002.	syenitoid	urn:cgi:classifier:CGI:SimpleLithology: 201001:syenitoid
1.1.2.1.07.1	Syenitic rock	syenitoid	Syenitoid with a plagioclase to total feldspar ratio betw een 0.1 and 0.35. Includes rocks in QAPF fields 7, 7*, and 7'.	LeMaitre et al., 2002.	syenitic_rock	urn:cgi:classifier:CGl:SimpleLithology: 201001:syenitic_rock
1.1.2.1.07.1.1	Quartz syenite	syenitic_rock	Syenitic rock that contains betw een 5 and 20 % quartz in the QAPF fraction. Defined modally in QAPF Field 7*.	LeMaitre et al., 2002.	quartz_syenite	urn:cgi:classifier:CGl:SimpleLithology: 201001:quartz_syenite
1.1.2.1.07.1.2	Syenite	syenitic_rock	Syenitic rock that contains between 0 and 5 % quartz and no feldspathoid mineral in the QAPF fraction. Defined modally in QAPF Field 7.	LeMaitre et al., 2002.	syenite	urn:cgi:classifier:CGl:SimpleLithology: 201001:syenite

1G-EID	1G-ETerm	1G-E Broader Concept	Definition	Source	CGI_URN	Complete URN
1.1.2.1.07.1.3	Foid bearing syenite	syenitic_rock	Syenitic rock that contains betw een 0 and 10 % feldspathoid mineral and no quartz in the QAPF fraction. Defined modally in QAPF Field 7'.	LeMaitre et al., 2002.	foid_bearing_syenite	urn:cgi:classifier:CGl:SimpleLithology: 201001:foid_bearing_syenite
1.1.2.1.07.2	Monzonitic rock	syenitoid	Syenitoid with a plagioclase to total feldspar ratio betw een 0.35 and 0.65. Includes rocks in QAPF fields 8, 8*, and 8'.	LeMaitre et al., 2002.	monzonitic_rock	urn:cgi:classifier:CGI:SimpleLithology: 201001:monzonitic_rock
1.1.2.1.07.2.1	Quartz monzonite	monzonitic _rock	Monzonitic rock that contains 5-20 % quartz in the QAPF fraction. Includes rocks defined modally in QAPF Field 8*.	LeMaitre et al., 2002.	quartz_monzonite	urn:cgi:classifier:CGl:SimpleLithology: 201001:quartz_monzonite
1.1.2.1.07.2.2	Monzonite	monzonitic _rock	Monzonitic rock that contains 0-5 % quartz and no feldspathoid mineral in the QAPF fraction. Includes rocks defined modally in QAPF Field 8.	LeMaitre et al., 2002.	monzonite	urn:cgi:classifier:CGl:SimpleLithology: 201001:monzonite
1.1.2.1.08	Foid dioritoid	phaneritic _igneous_rock	Phaneritic crystalline igneous rock in which M is less than 90; the plagioclase to total feldspar ratio is greater than 0.5; feldspathoid minerals form 10-60 % of the QAPF fraction; plagioclase has anorthite content less than 50 %. These rocks typically contain large amounts of mafic minerals. Includes rocks defined modally in QAPF fields 13 and 14.	LeMaitre et al., 2002.	oid_dioritoid	urn:cgi:classifier:CGl:SimpleLithology: 201001:foid_dioritoid
1.1.2.1.09	Foid gabbroid	phaneritic _igneous_rock	Phaneritic crystalline igneous rock in which M is less than 90; the plagioclase to total feldspar ratio is greater than 0.5; feldspathoids form 10-60 % of the QAPF fraction, and plagioclase has anorthite content greater than 50 %. These rocks typically contain large amounts of mafic minerals. Includes rocks defined modally in QAPF fields 13 and 14.	LeMaitre et al., 2002.	foid_gabbroid	urn:cgi:classifier:CGl:SimpleLithology: 201001:foid_gabbroid
1.1.2.1.10	Foid syenitoid	phaneritic _igneous_rock	Phaneritic crystalline igneous rock with M less than 90, contains betw een 10 and 60 % feldspathoid mineral in the QAPF fraction, and has a plagioclase to total feldspar ratio less than 0.5. Includes QAPF fields 11 and 12.	LeMaitre et al., 2002.	foid_syenitoid	urn:cgi:classifier:CGl:SimpleLithology: 201001:foid_syenitoid

1G-EID	1G-E Term	1G-E Broader Concept		Source	CGI_URN	Complete URN
1.1.2.1.11	Foidolite	_igneous_rock	Phaneritic crystalline rock containing more than 60 % feldspathoid minerals in the QAPF fraction. Includes rocks defined modally in QAPF field 15. SeeAlso: ijolite, melteigite, nephelinolite, urtite.	LeMaitre et al., 2002.	foidolite	urn:cgi:classifier:CGl:SimpleLithology: 201001:foidolite
1.1.2.2	Fine grained igneous rock		Igneous rock in which the framew ork of the rock consists of crystals that are too small to determine mineralogy with the unaided eye; framew ork may include up to 50 % glass. A significant %age of the rock by volume may be phenocrysts. Includes rocks that are generally called volcanic rocks. Synonym: volcanic rock.		fine_grained_igneous _rock	urn:cgi:classifier:CGl:SimpleLithology: 201001:fine_grained_igneous_rock
1.1.2.2.1	Rhyolitoid	_igneous_rock	Fine grained igneous rock consisting of quartz and alkali feldspar, with minor plagioclase and biotite, in a microcrystalline, cryptocrystalline or glassy groundmass. Flow texture is common. Includes rocks defined modally in QAPF fields 2 and 3 or chemically in TAS Field R as rhyolite. QAPF normative definition is based on modal mineralogy thus: less than 90 % mafic minerals, betw een 20 and 60 % quartz in the QAPF fraction, and ratio of plagioclse to total feldspar is less than 0.65. Synonym: rhyolitic rock.	LeMaitre et al., 2002.	rhyolitoid	urn:cgi:classifier:CGl:SimpleLithology: 201001:rhyolitoid
1.1.2.2.1.1	Rhyolite		Rhyolitoid in w hich the ratio of plagioclase to total feldspar is betw een 0.1 and 0.65. SeeAlso: liparite, rhyodacite.	LeMaitre et al., 2002.	rhyolite	urn:cgi:classifier:CGl:SimpleLithology: 201001:rhyolite
1.1.2.2.1.2	Alkali feldspar rhyolite	rhyolitoid	Rhyolitoid in w hich the ratio of plagioclase to total feldspar is less than 0.1. QAPF field 2. SeeAlso: alkali feldspar liparite, peralkaline rhyolite.	LeMaitre et al., 2002.	alkali_feldspar_rhyolit e	urn:cgi:classifier:CGl:SimpleLithology: 201001:alkali_feldspar_rhyolite

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.1.2.2.2	Dacite	fine_grained_i	Fine grained or porphyritic crystalline rock that contains	LeMaitre et al., 2002.	dacite	urn:cgi:classifier:CGI:SimpleLithology:
		gneous_rock	less than 90 % mafic minerals, betw een 20 and 60 %			201001:dacite
			quartz in the QAPF fraction, and has a plagioclase to total			
			feldspar ratio greater than 0.65. Includes rocks defined			
			modally in QAPF fields 4 and 5 or chemically in TAS Field			
			O3. Typcially composed of quartz and sodic plagioclase			
			w ith minor amounts of biotite and/or hornblende and/or			
			pyroxene; fine-grained equivalent of granodiorite and			
			tonalite. SeeAlso: rhyodacite.			
1.1.2.2.3	Trachytoid	fine_grained	Fine grained igneous rock than contains less than 90 %	LeMaitre et al., 2002.	trachytoid	urn:cgi:classifier:CGI:SimpleLithology:
		_igneous_rock	mafic minerals, less than 10 % feldspathoid mineral and			201001:trachytoid
			less than 20 % quartz in the QAPF fraction and has a			
			plagioclase to total feldspar ratio less than 0.65. Mafic			
			minerals typically include amphibole or mica; typically			
			porphyritic. Includes rocks defined modally in QAPF fields			
			6, 7 and 8 (with subdivisions) or chemically in TAS Field T			
			as trachyte or latite. SeeAlso: basaltic-trachyandesite,			
			benmoreite, haw aiite, mugearite, potassic-trachybasalt,			
			shoshonite, trachyandesite, trachybasalt, trachydacite,			
			trachyte (TAS).			
1.1.2.2.3.1	Trachytic rock	trachytoid	Trachytoid that has a plagioclase to total feldspar ratio	LeMaitre et al., 2002.	trachytic_rock	urn:cgi:classifier:CGl:SimpleLithology:
		-	betw een 0.1 and 0.35. QAPF fields 7, 7', and 7*.			201001:trachytic_rock
1.1.2.2.3.1.1	Trachyte	trachytic_rock	Trachytoid that has a plagioclase to total feldspar ratio	LeMaitre et al., 2002.	trachyte	urn:cgi:classifier:CGI:SimpleLithology:
			betw een 0.1 and 0.35, betw een 0 and 5 % guartz in the			201001:trachyte
			QAPF fraction, and no feldspathoid minerals. QAPF field			
			7.			
1.1.2.2.3.2	Latitic rock	trachytoid	Trachytoid that has a plagioclase to total feldspar ratio	LeMaitre et al., 2002.	latitic_rock	urn:cgi:classifier:CGl:SimpleLithology:
			betw een 0.35 and 0.65. QAPF fields 8, 8' and 8*.			201001:latitic_rock
1.1.2.2.3.2.1	Latite	latitic_rock	Latitic rock that contains betw een 0 and 5 % quartz and	LeMaitre et al., 2002.	latite	urn:cgi:classifier:CGI:SimpleLithology:
			no feldspathoid in the QAPF fraction. QAPF field 8.			201001:latite

1G-EID	1G-ETerm	1G-E Broader Concept	Definition	Source	CGI_URN	Complete URN
		ooncept				
1.1.2.2.4	Andesite	fine_grained	Fine-grained igneous rock with less than 20 % quartz and	LeMaitre et al., 2002.	andesite	urn:cgi:classifier:CGI:SimpleLithology:
		_igneous_rock	less than 10 % feldspathoid minerals in the QAPF fraction,			201001:andesite
			in which the ratio of plagioclase to total feldspar is greater			
			0.65. Includes rocks defined modally in QAPF fields 9 and			
			10 or chemically in TAS field O2 as andesite. Basalt and			
			andesite, w hich share the same QAPF fields, are			
			distinguished chemically based on silica content, with			
			basalt defined to contain less than 52 w eight % silica. If			
			chemical data are not available, the color index is used to			
			distinguish the categories, with basalt defined to contain			
			greater than 35 % mafic minerals by volume or greater			
			than 40 % mafic minerals by weight. Typically consists of			
			plagioclase (frequently zoned from labradorite to			
			oligoclase), pyroxene, hornblende and/or biotite. Fine			
			grained equivalent of dioritic rock. SeeAlso: basaltic			
			andesite, leuco-basalt, mela-andesite.			
1.1.2.2.4.1	Boninite	andesite	Andesitic rock that contains more than 8 % MgO. Typically	LeMaitre et al., 2002	boninite	urn:cgi:classifier:CGI:SimpleLithology:
			consists of phenocrysts of protoenstatite, orthopyroxene,			201001:boninite
			clinopyroxene, and olivine in a glassy base full of			
			crystallites, and exhibits textures characterisitc of rapid			
			crystal grow th.			
	1	1	1			

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.1.2.2.5	Basalt	fine_grained	Fine-grained or porphyritic igneous rock with less than 20	after LeMaitre et al.,	basalt	urn:cgi:classifier:CGl:SimpleLithology:
		_igneous_rock	% quartz, and less than 10 % feldspathoid minerals, in	2002.		201001:basalt
			w hich the ratio of plagioclase to total feldspar is greater			
			0.65. Typically composed of calcic plagioclase and			
			clinopyroxene; phenocrysts typically include one or more			
			of calcic plagioclase, clinopyroxene, orthopyroxene, and			
			olivine. Includes rocks defined modally in QAPF fields 9			
			and 10 or chemically in TAS field B as basalt. Basalt and			
			andesite are distinguished chemically based on silica			
			content, with basalt defined to contain less than 52			
			weight % silica. If chemical data are not available, the			
			color index is used to distinguish the categories, with			
			basalt defined to contain greater than 35 % mafic minerals			
			by volume or greater than 40 % mafic minerals by weight.			
			SeeAlso: leuco-basalt, mela-andesite, picrite, picrobasalt.			
1.1.2.2.5.1	Alkali olivine	basalt	Alkali olivine basalt is silica-undersaturated, characterized	Carmichael et al.,	alkali-olivine_basalt	urn:cgi:classifier:CGI:SimpleLithology:
	basalt		by the absence of orthopyroxene, absence of quartz,	1974.		201001:alkali-olivine_basalt
			presence of olivine, and typically contains some			
			feldspathoid mineral, alkali feldspar or phlogopite in the			
			groundmass. Feldspar phenocrysts typically are			
			labradorite to andesine in composition. Augite is rich in			
			titanium compared to augite in tholeiitic basalt. Alkali olivine			
			basalt is relatively rich in sodium.			
1.1.2.2.5.2	Tholeiitic	basalt	Tholeiitic basalt is defined here to contain 2 pyroxene	Carmichael et al.,	tholeiitic_basalt	urn:cgi:classifier:CGl:SimpleLithology:
	basalt		phases and interstitial quartz or tridymite or cristobalite in	1974.		201001:tholeiitic_basalt
			the groundmass. Pyroxene (augite and orthopyroxene or			
			pigeonite) and calcium-rich plagioclase are common			
			phenocryst minerals. Olivine may also be a phenocryst,			
			and when present, may have rims of pigeonite. Only in			
			tholeiitic basalt is olivine in reaction relationship with melt.			
			Interstitial siliceous residue may be present, and is often			
			glassy. Tholeiitic basalt is relatively poor in sodium. This			
			category includes most basalts of the ocean floor, most			
			large oceanic islands, and continental flood basalts such			
			as the Columbia River Plateau.			

1G-EID	1G-ETerm	1G-E Broader Concept	Definition	Source	CGI_URN	Complete URN
		concept				
1.1.2.2.6	Phonolitoid	fine_grained	Fine grained igneous rock than contains less than 90 % mafic minerals, betw een 10 and 60 % feldspathoid	LeMaitre et al., 2002.	phonolitoid	urn:cgi:classifier:CGI:SimpleLithology: 201001:phonolitoid
			mineral in the QAPF fraction and has a plagioclase to total			
			feldspar ratio less than 0.5. Includes rocks defined			
			modally in QAPF fields 11 and 12, and TAS field Ph.			
			Synonym: phonolitic rock.			
1.1.2.2.6.1	Phonolite	phonolitoid	Phonolitoid in which the plagioclase to total feldspar ratio	LeMaitre et al., 2002.	phonolite	urn:cgi:classifier:CGI:SimpleLithology:
			is less than 0.1. Rock consists of alkali feldspar,			201001:phonolite
			feldspathoid minerals, and mafic minerals. SeeAlso:			
			peralkaline phonolite.			
1.1.2.2.7	Tephritoid	fine_grained	Fine grained igneous rock than contains less than 90 %	LeMaitre et al., 2002.	tephritoid	urn:cgi:classifier:CGI:SimpleLithology:
		_igneous_rock	mafic minerals, betw een 10 and 60 % feldspathoid mineral in the QAPF fraction and has a plagioclase to total			201001:tephritoid
			feldspar ratio greater than 0.5. Includes rocks classified			
			in QAPF field 13 and 14 or chemically in TAS field U1 as			
			basanite or tephrite. Synonym: tephritic rock.			
1.1.2.2.7.1	Tephrite	tephritoid	Tephritoid that has a plagioclase to total feldspar ratio	LeMaitre et al., 2002.	tephrite	urn:cgi:classifier:CGI:SimpleLithology:
			greater than 0.9, and contains less than 10 % normative			201001:tephrite
			(CIPW ¹) olivine. Synonym: tephritoid.			
1.1.2.2.7.2	Basanite	tephritoid	Tephritoid that has a plagioclase to total feldspar ratio	LeMaitre et al., 2002.	basanite	urn:cgi:classifier:CGI:SimpleLithology:
			greater than 0.9, and contains more than 10 % normative			201001:basanite
1.1.2.2.8	Foiditoid	fine grained	(CIPW ¹) olivine. Synonym: tephritoid. Fine grained crystalline rock containing less than 90 %	LeMaitre et al., 2002.	foiditoid	urn:cgi:classifier:CGI:SimpleLithology:
1.1.2.2.0			mafic minerals and more than 60 % feldspathoid minerals			201001:foiditoid
			in the QAPF fraction. Includes rocks defined modally in			
			QAPF field 15 or chemically in TAS field F. Synonym:			
			foidite (sensu lato), foiditic rock.			
1.1.2.2.8.1	Foidite	foiditoid	Foiditoid that contains greater than 90 % feldspathoid	LeMaitre et al., 2002.	foidite	urn:cgi:classifier:CGI:SimpleLithology:
			minerals in the QAPF fraction.			201001:foidite
1.1.2.3	Ultramafic	igneous_rock	Igneous rock that consists of greater than 90 % mafic	LeMaitre et al., 2002;	ultramafic_igneous_r	urn:cgi:classifier:CGI:SimpleLithology:
	igneous rock		minerals. SeeAlso: alkremite.	Gillespie & Styles,	ock	201001:ultramafic_igneous_rock
				1999.		

1G-ETerm		Definition	Source	CGI_URN	Complete URN
	Concept				
Peridotite	ultramafic	Ultramafic rock consisting of more than 40 % (by volume)	LeMaitre et al., 2002.	peridotite	urn:cgi:classifier:CGI:SimpleLithology:
	_igneous_rock	olivine with pyroxene and/or amphibole and little or no			201001:peridotite
		feldspar. Commonly altered to serpentinite. Includes rocks			
		defined modally in the ultramafic rock classification as			
		dunite, harzburgite, lherzolite, wehrlite, olivinite, pyroxene			
		peridotite, pyroxene hornblende peridotite or hornblende			
		peridotite. SeeAlso: dunite, harzburgite, lherzolite, olivinite,			
		w herlite.			
Pyroxenite	ultramafic	Ultramafic phaneritic igneous rock composed almost	LeMaitre et al., 2002.	pyroxenite	urn:cgi:classifier:CGI:SimpleLithology:
	_igneous_rock	entirely of one or more pyroxenes and occasionally			201001:pyroxenite
		biotite, hornblende and olivine. Includes rocks defined			
		modally in the ultramafic rock classification as olivine			
		pyroxenite, olivine-hornblende pyroxenite, pyroxenite,			
		orthopyroxenite, clinopyroxenite and websterite.			
		SeeAlso: clinopyroxenite, orthopyroxenite, w ebsterite.			
Komatiitic rock	ultramafic	Ultramafic, magnesium-rich volcanic rock, typically with	LeMaitre et al., 2002.	komatiitic_rock	urn:cgi:classifier:CGI:SimpleLithology:
	_igneous rock	spinifex texture of intergrow n skeletal and bladed olivine			201001:komatiitic_rock
		and pyroxene crystals set in abundant glass. Includes			
		komatiite and meimechite. SeeAlso: komatiite, meimechite.			
Exotic	igneous_rock	Rock with 'exotic' mineralogical, textural or field setting	Gillespie & Styles,	exotic_composition_i	urn:cgi:classifier:CGl:SimpleLithology:
composition		characteristics; typically dark colored, with abundant	1999; LeMaitre et al.,	gneous_rock	201001:exotic_composition_igneous_
igneous rock		phenocrysts. Criteria include: presence of greater than 10	2002.		rock
		% melilite or leucite, or presence of kalsilite, or greater			
		than 50 % carbonate minerals. Includes Carbonatite,			
		Melilitic rock, Kalsilitic rocks, Kimberlite, Lamproite, Leucitic			
		rock and Lamprophyres.			
Carbonatite	exotic	Igneous rock composed of more than 50 % modal	LeMaitre et al., 2002.	carbonatite	urn:cgi:classifier:CGI:SimpleLithology:
	_composition	carbonate minerals.			201001:carbonatite
	igneous_rock				
	Peridotite Pyroxenite Komatiitic rock Exotic composition igneous rock	ConceptPeridotiteultramafic _igneous_rockPyroxeniteultramafic _igneous_rockPyroxeniteultramafic _igneous_rockKomatiitic rockultramafic _igneous_rockExotic composition igneous rockigneous_rockCarbonatiteexotic _composition	Concept Ultramafic _igneous_rock Ultramafic rock consisting of more than 40 % (by volume) of invine with pyroxene and/or amphibole and little or no feldspar. Commonly altered to serpentinite. Includes rocks defined modally in the ultramafic rock classification as dunite, harzburgite, lherzolite, wehrlite, olivinite, pyroxene peridotite. SeeAlso: dunite, harzburgite, lherzolite, olivinite, pyroxene peridotite. SeeAlso: dunite, harzburgite, lherzolite, olivinite, wherlite. Pyroxenite ultramafic _igneous_rock Ultramafic phaneritic igneous rock composed almost entirely of one or more pyroxenes and occasionally biotite, hornblende and olivine. Includes rocks defined modally in the ultramafic rock classification as olivine pyroxenite, olivine-hornblende pyroxenite, pyroxenite, orthopyroxenite, clinopyroxenite and websterite. SeeAlso: clinopyroxenite, orthopyroxenite, websterite. Komatilitic rock ultramafic _igneous_rock Ultramafic, magnesium-rich volcanic rock, typically with spinfex texture of intergrow n skeletal and bladed olivine and pyroxene crystals set in abundant glass. Includes komatile and meimechite. SeeAlso: komatilite, meimechite. Exotic composition igneous rock igneous_rock Rock with 'exotic' mineralogical, textural or field setting characteristics; typically dark colored, with abundant phenocrysts. Criteria include: presence of greater than 10 % mellite or leucite, or presence of kalsilite, or greater than 50 % carbonate minerals. Includes Carbonatite, Mellitic rock, Kalsilitic rocks, Kimberlite, Lamproite, Leucitic rock and Lamprophyres. Carbonatite exotic _composition Igneous rock composed of more than 50 % modal carbonate minerals.	Peridotiteultramafic _igneous_rockUltramafic rock consisting of more than 40 % (by volume) olivine with pyroxene and/or amphibole and little or no feldspar. Commonly altered to serpentinite. Includes rocks defined modally in the ultramafic rock classification as dunite, harzburgite, lherzolite, wehrlite, olivinite, pyroxene peridotite, pyroxene hornblende peridotite or hornblende peridotite. SeeAlso: dunite, harzburgite, lherzolite, wehrlite, olivinite, wherlite.LeMaitre et al., 2002.Pyroxeniteultramafic _igneous_rockUltramafic phaneritic igneous rock composed almost entirely of one or more pyroxenes and occasionally biotite, hornblende and olivine. Includes rocks defined modally in the ultramafic rock classification as olivine pyroxenite, olivine-hornblende pyroxenite, pyroxenite, pyroxenite, orthopyroxenite, pyroxenite, pyroxenite, orthopyroxenite, orthopyroxenite, orthopyroxenite, exects seeAlso: clinopyroxenite, orthopyroxenite, pyroxenite, pyroxenite, orthopyroxenite, orthopyroxenite, websterite.LeMaitre et al., 2002.Komatilitic rockultramafic _igneous rockUltramafic, magnesium-rich volcanic rock, typically with spinifex texture of intergrow n skeletal and bladed olivine and pyroxene crystals set in abundant glass. Includes komatilite and meimechite. SeeAlso: komatilite, meimechite.Callespie & Styles, 1999; LeMaitre et al., 2002.Exotic composition igneous rockigneous_rock meilite or leucite, or presence of greater than 10 % meilitic rock, Kalsilitic rock, Kalsilite rock, Kalsilite, rock, and Lamprophyres.Gillespie & Styles, 1999; LeMaitre et al., 2002.Carbonatite corpositionexotic greater than 50 % carbonate minerals. Includes Carbonatite, Meilitic rock, Kalsilitic rock, Kalsilite rock, Kalsilite roc	Concept Ultramafic _igneous_rock Ultramafic rock consisting of more than 40 % (by volume) olivine with pyroxene and/or amphibole and little or no feldspar. Commonly altered to serpentinite. Includes rocks defined modally in the ultramafic rock classification as dunite, harzburgite, lherzolite, wehrite, olivinite, proxene peridotite, pyroxene hornblende peridotite or hornblende peridotite. SeeAlso: dunite, harzburgite, lherzolite, olivinite, wherite. LeMaitre et al., 2002. peridotite Pyroxenite ultramafic _igneous_rock Ultramafic phaneritic igneous rock composed almost entirely of one or more pyroxenes and occasionally biotite, hornblende and olivine. Includes rocks defined modally in the ultramafic rock classification as olivine pyroxenite, clinopyroxenite, orthopyroxenite, pyroxenite, orthopyroxenite, clinopyroxenite, orthopyroxenite, pyroxenite, orthopyroxenite, clinopyroxenite, orthopyroxenite, websterite. LeMaitre et al., 2002. komatilitic_rock Komatilitic rock ultramafic _igneous_rock Ultramafic magnesium-rich volcanic rock, typically with and pyroxene crystats set in abundant glass. Includes komatilite and meimechite. SeeAlso: komatilite, meimechite. SeeAlso: clinopyroxenite, schored, with abundant phenocrysts. Criteria include: presence of greater than 50 % carbonate minerals. Includes Carbonatite, Meiliter rock, Kalsilitic rock, Kimberlite, Lamproite, Leucitic rock and Lamprophyres. Gillespie & Styles, 1999. LeMaitre et al., 2002. exotic_composition_i genous_rock Carbonate minerals. gneous rock, composed of more than 50 % modal carbonate minerals. LeMaitre et al., 2002. carbonate minerals.

1G-EID	1G-ETerm	1G-E Broader Concept	Definition	Source	CGI_URN	Complete URN
1.1.2.4.2	Kalsilitic and melilitic rocks	— ·	Igneous rock containing greater than 10 % melilite or kalsilite. Typically undersaturated, ultrapotassic (kalsilitic rocks) or calcium-rich (melilitic rocks) mafic or ultramafic rocks. SeeAlso: coppaelite, kalsilitite, katungite, mafurite, melilitite, melilitolite, ugandite, venanzite.	LeMaitre et al., 2002.	kalsilitic_and_melilitic_ rock	urn:cgi:classifier:CGl:SimpleLithology: 201001:kalsilitic_and_melilitic_rock
1.1.2.4.3	Exotic alkaline rock	— ·	Kimberlite, lamproite, or lamprophyre. Generally are potassic, mafic or ultramafic rocks. Olivine (commonly serpentinized in kimberlite), and phlogopite are significant constituents. SeeAlso: cancalite, cedricite, fitzroyite, fortunite, jumillite, kimberlite, lamproite, lamprophyre, madupite, mamilite, orendite, verite, w olgidite, w yomingite.	LeMaitre et al., 2002.	exotic_alkaline_rock	urn:cgi:classifier:CGl:SimpleLithology: 201001:exotic_alkaline_rock
1.1.2.5	Porphyry	igneous_rock	Igneous rock that contains conspicuous phenocrysts in a finer grained groundmass; groundmass itself may be phaneritic or fine-grained.	LeMaitre et al., 2002.	porphyry	urn:cgi:classifier:CGl:SimpleLithology: 201001:porphyry
1.1.2.6	Doleritic rock	igneous_rock	Dark colored gabbroic (basaltic) or dioritic (andesitic) rock intermediate in grain size betw een basalt and gabbro and composed of plagioclase, pyroxene and opaque minerals; often with ophitic texture. Typically occurs as hypabyssal intrusions. Includes dolerite, microdiorite, diabase and microgabbro. SeeAlso: diabase, microdiorite, microgabbro, trap. Related Concept: andesite, dioritic_rock, gabbroid.	2005; LeMaitre et al., 2002; Gillespie &	doleritic_rock	urn:cgi:classifier:CGl:SimpleLithology: 201001:doleritic_rock

4.2.2 Sedimentary material

Sedimentary material is divided into Sediments, Sedimentary rocks and Chemical sedimentary material. This classification follows the Science Language Technical Team (SLTT) of the North American Geologic-map Data Model Steering Committee (NADMSC) of 2004.

Sediment comprises all unconsolidated material and is further subdivided into Clastic, Carbonate and Biogenic sediments. Sedimentary rocks, which formed by accumulation and cementation of solid fragmental material, are further subdivided into Clastic, Organic-rich, Carbonate, Non-clastic siliceous and Iron-rich categories, as well as Generic mudstones. Chemical sedimentary material comprises the evaporites.

Table 4-6 shows the agreed terms, their definitions and URNs for Sedimentary Material; figure 4-5 shows the corresponding concept hierarchy.

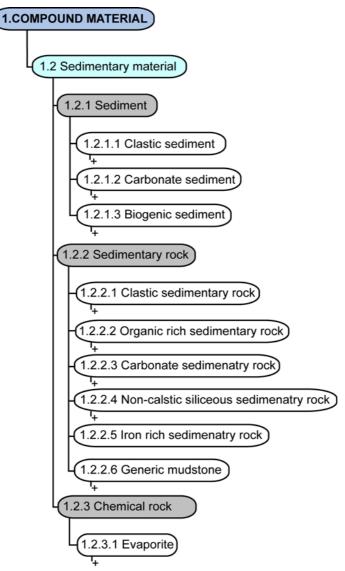


Figure 4-5: Hierarchical overview representation of the 1G-E vocabulary for Sedimentary material. For clarity only the main groups are indicated.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.2	Sedimentary	compound	Material formed by accumulation of solid fragmental	SLTT, 2004 ¹ .	sedimentary_material	urn:cgi:classifier:CGI:SimpleLithology:
	material	_material	material deposited by air, water or ice, or material that			201001:sedimentary_material
			accumulated by other natural agents such as chemical			
			precipitation from solution or secretion by organisms.			
			Includes both sediment and sedimentary rock. Includes			
			epiclastic deposits. All stated composition criteria are			
			based on the mineral/compound material (GeoSciML			
			term)/particulate fraction of the material, irrespective of			
			porosity or the pore-fluid. No distinctions are made based			
			on porosity or pore fluid composition (except organic rich			
			sediment in w hich liquid hydrocarbon content may be			
1.0.1			considered).			
1.2.1	Sediment	sedimentary	Unconsolidated material consisting of an aggregation of	SLTT, 2004 ¹ .	sediment	urn:cgi:classifier:CGI:SimpleLithology:
		_material	particles transported or deposited by air, water or ice, or			201001:sediment
			that accumulated by other natural agents, such as			
			chemical precipitation, and that forms in layers on the			
1011	Olastia	a a diasa at	Earth's surface. Includes epiclastic deposits.			
1.2.1.1	Clastic	sediment	Sediment in which at least 50 % of the constituent	SLTT, 2004 ¹ ;	clastic_sediment	urn:cgi:classifier:CGI:SimpleLithology:
	sediment		particles were derived from erosion, weathering, or mass-			201001:clastic_sediment
			w asting of pre-existing earth materials, and transported	2005.		
			to the place of deposition by mechanical agents such as water, wind, ice and gravity.			
1.2.1.1.1	Diamicton	clastic	Unsorted or poorly sorted, clastic sediment with a wide	Fairbridge &	diamicton	urn:cgi:classifier:CGI:SimpleLithology:
1.2.1.1.1	Diamicton	sediment	range of particle sizes, including a muddy matrix.	Bourgeois, 1978.	ulamicium	201001:diamicton
		_sediment	Biogenic materials that have such texture are excluded.			201001.00011001
			Distinguished from conglomerate, sandstone, mudstone			
			based on polymodality and lack of structures related to			
			transport and deposition of sediment by moving air or			
			w ater. Assignment to an other size class can be used in			
			conjunction to indicate the dominant grain size.			

¹ for explanation please see chapter 8: Abbreviations.

1G-EID	1G-ETerm	1G-E Broader Concept	Definition	Source	CGI_URN	Complete URN
1.2.1.1.2	Gravel	clastic _sediment	Clastic sediment containing greater than 30 % gravel-size particles (greater than 2.0 mm diameter). Gravel in w hich more than half of the particles are of epiclastic origin.	SLTT, 2004 ^{1,2} .	gravel	urn:cgi:classifier:CGl:SimpleLithology: 201001:gravel
1.2.1.1.3	Sand	clastic _sediment	Clastic sediment in which less than 30 % of particles are gravel (greater than 2 mm in diameter) and the sand to mud ratio is at least 1. More than half of the particles are of epiclastic origin.	SLTT, 2004 ^{1,2} .	sand	urn:cgi:classifier:CGl:SimpleLithology: 201001:sand
1.2.1.1.4	Mud	clastic _sediment	Clastic sediment consisting of less than 30 % gravel-size (2 mm) particles and with a mud-size to sand-size particle ratio greater than 1. More than half of the particles are of epiclastic origin.	SLTT, 2004 ^{1,2} .	mud	urn:cgi:classifier:CGl:SimpleLithology: 201001:mud
1.2.1.1.4.1	Clay	mud	Mud that consists of greater than 50 % particles with grain size less than 4 μm	SLTT, 2004 ^{1,3} ; Neuendorf et al. 2005.	clay	urn:cgi:classifier:CGl:SimpleLithology: 201001:clay
1.2.1.1.4.2	Silt	mud	Mud that consists of greater than 50 % silt-size grains. Synonym: loess.	SLTT, 2004 ¹ ; Neuendorf et al. 2005.	silt	urn:cgi:classifier:CGl:SimpleLithology: 201001:silt
1.2.1.2	Carbonate sediment	sediment	Sediment in w hich at least 50 % of the primary and/or recrystallized constituents are composed of one (or more) of the carbonate minerals calcite, aragonite and dolomite, in particles of intrabasinal origin.	SLTT, 2004 ¹ .	carbonate_sediment	urn:cgi:classifier:CGl:SimpleLithology: 201001:carbonate_sediment
1.2.1.2.1	Impure carbonate sediment	carbonate _sediment	Carbonate sediment in w hich betw een 50 and 90 % of the constituents are composed of one (or more) of the carbonate minerals in particles of intrabasinal origin. Synonym: marl.	CGI SimpleLithology, 2010.	impure_carbonate_se diment	urn:cgi:classifier:CGl:SimpleLithology: 201001:impure_carbonate_sediment
1.2.1.3	Biogenic sediment	sediment	Sediment composed of greater than 50 % material of biogenic origin. Because the biogenic material may be skeletal remains that are not organic, all biogenic sediment is not necessarily organic-rich. Related Concept: carbonate_sediment, non_clastic_siliceous_sediment.	SLTT, 2004 ¹ .	biogenic_sediment	urn:cgi:classifier:CGl:SimpleLithology: 201001:biogenic_sediment

¹ for explanation please see chapter 8: Abbreviations; ² particle sizes defined from Krumbein & Sloss, 1963; Krumbein & Pettijohn, 1938; ³ particle size from Wentworth grade scale.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.2.1.3.1	Organic rich	biogenic	Sediment with color, composition, texture and apparent	SLTT, 2004 ¹ .	organic_rich_sedime	urn:cgi:classifier:CGI:SimpleLithology:
	sediment	_sediment	density indicating greater than 50 % organic content by		nt	201001:organic_rich_sediment
			w eight on a moisture-free basis.			
1.2.1.3.1.1	Peat	organic_rich	Unconsolidated organic-rich sediment composed of at	Hallsw orth & Knox	peat	urn:cgi:classifier:CGI:SimpleLithology:
		_sediment	least 50 % semi-carbonised plant remains; individual	1999; ECE-UN, 1998 ¹ .		201001:peat
			remains commonly seen with unaided eye; yellow ish			
			brow n to brow nish black; generally fibrous texture; can			
			be plastic or friable. In its natural state it can be readily cut			
			and has a very high moisture content, generally greater			
			than 90 %. Liptinite to Inertinite ratio is less than 1.			
1.2.1.3.1.2	Sapropel	organic_rich	Jelly like organic rich sediment composed of plant	Neuendorf et al.,	sapropel	urn:cgi:classifier:CGI:SimpleLithology:
		_sediment	remains, usually algal. Liptinite to Inertinite ratio is greater	2005; ECE-UN, 19981.		201001:sapropel
			than 1. Related Concept: ooze.			
1.2.1.3.2	Ooze	biogenic	Biogenic sediment consisting of less than 1 % gravel-size	Bates & Jackson,	ooze	urn:cgi:classifier:CGI:SimpleLithology:
		_sediment	(greater than or equal to 2 mm) particles, with a sand to	1987; Hallsw orth &		201001:ooze
			mud ratio less than 1 to 9, and less than 50 % carbonate	Knox, 1999.		
			minerals. Synonym: biogenic mud.			
1.2.1.3.2.1	Carbonate	ooze	Ooze that consists of more than 50 % carbonate skeletal	CGI SimpleLithology,	carbonate_ooze	urn:cgi:classifier:CGI:SimpleLithology:
	ooze		remains.	2010.		201001:carbonate_ooze
1.2.1.3.2.2	Siliceous ooze	ooze	Ooze that consists of more than 50 % siliceous skeletal	CGI SimpleLithology,	siliceous_ooze	urn:cgi:classifier:CGI:SimpleLithology:
			remains.	2010.		201001:siliceous_ooze
1.2.2	Sedimentary	sedimentary	Rock formed by accumulation and cementation of solid	SLTT, 2004 ¹ .	sedimentary_rock	urn:cgi:classifier:CGI:SimpleLithology:
	rock	_material	fragmental material deposited by air, water or ice, or as a			201001:sedimentary_rock
			result of other natural agents, such as precipitation from			
			solution, the accumulation of organic material, or from			
			biogenic processes, including secretion by organisms.			
			Includes epiclastic deposits.			
1.2.2.1	Clastic	sedimentary	Sedimentary rock in w hich at least 50 % of the	SLTT, 2004 ¹ ;	clastic_sedimentary_	urn:cgi:classifier:CGI:SimpleLithology:
	sedimentary	_rock	constituent particles were derived from erosion,	Neuendorf et al.,	rock	201001:clastic_sedimentary_rock
	rock		w eathering, or mass-w asting of pre-existing earth	2005.		
			materials, and transported to the place of deposition by			
			mechanical agents such as water, wind, ice and gravity.			

for explanation please see chapter 8: Abbreviations.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.2.2.1.1	Diamictite	clastic	Unsorted or poorly sorted, clastic sedimentary rock with a	Fairbridge &	diamictite	urn:cgi:classifier:CGI:SimpleLithology:
		_sedimentary	wide range of particle sizes including a muddy matrix.	Bourgeois, 1978.		201001:diamictite
		_rock	Biogenic materials that have such texture are excluded.			
1.2.2.1.2	Conglomerate	clastic	Clastic sedimentary rock composed of at least 30 %	Neuendorf et al.,	clastic_conglomerate	urn:cgi:classifier:CGI:SimpleLithology:
		_sedimentary	rounded to subangular fragments larger than 2 mm in	2005; SLTT, 2004 ¹ .		201001:clastic_conglomerate
		_rock	diameter; typically contains finer grained material in			
			interstices between larger fragments. If more than 15 %			
			of the fine grained matrix is of indeterminant clastic or			
			diagenetic origin and the fabric is matrix supported, may			
			also be categorized as wackestone. If rock has unsorted			
			or poorly sorted texture with a wide range of particle			
			sizes, may also be categorised as diamictite. Synonym:			
			clastic conglomerate.			
1.2.2.1.3	Sandstone	clastic	Clastic sedimentary rock in which less than 30 % of	SLTT, 2004 ¹ ;	clastic_sandstone	urn:cgi:classifier:CGI:SimpleLithology:
		_sedimentary	particles are greater than 2 mm in diameter (gravel) and	Neuendorf et al.		201001:clastic_sandstone
		_rock	the sand to mud ratio is at least 1. Synonym: clastic	2005 ³ .		
			sandstone.			
1.2.2.1.3.1	Arenite	clastic	Clastic sandstone that contains less than 10 % matrix.	Pettijohn et al., 1972.	arenite	urn:cgi:classifier:CGI:SimpleLithology:
		_sandstone	Matrix is mud-size silicate minerals (clay, feldspar,			201001:arenite
			quartz, rock fragments, and alteration products) of detrital			
			or diagenetic nature. SeeAlso: pure sandstone.			
1.2.2.1.3.2	Wacke	clastic	Clastic sandstone with more than 10 % matrix of	Pettijohn et al., 1972.	wacke	urn:cgi:classifier:CGI:SimpleLithology:
		_sandstone	indeterminate detrital or diagenetic nature. Matrix is mud			201001:w acke
			size silicate minerals (clay, feldspar, quartz, rock			
			fragments, and alteration products). SeeAlso:			
			grayw acke, impure sandstone.			
1.2.2.1.4	Mudstone	clastic	Clastic sedimentary rock consisting of less than 30 %	Pettijohn et al., 1987 ⁴ .	clastic_mudstone	urn:cgi:classifier:CGI:SimpleLithology:
		_sedimentary	gravel-size (2 mm) particles and with a mud to sand ratio			201001:clastic_mudstone
		_rock	greater than 1. Synonym: clastic mudstone. SeeAlso:			
			argillite.			
1.2.2.1.4.1	Claystone	clastic	Mudstone that contains no detectable silt, inferred to	CGI SimpleLithology,	claystone	urn:cgi:classifier:CGI:SimpleLithology:
		_mudstone	consist virtually entirely of clay-size particles. Related	2010.		201001:claystone
		1	Concept: clastic_mudstone.			

¹ for explanation please see chapter 8: Abbreviations; ³ particle size from Wentworth grade scale; ⁴ referenced in Hallsworth & Knox 1999; extrapolated from Folk, 1954, Figure 1a.

1G-EID	1G-ETerm	1G-E Broader Concept	Definition	Source	CGI_URN	Complete URN
1.2.2.1.4.2	Siltstone	clastic	Mudstone that contains detectable silt. Synonym: silt	CGI SimpleLithology,	siltstone	urn:cgi:classifier:CGl:SimpleLithology:
		_mudstone	bearing mudstone. SeeAlso: siltstone. Related Concept:	2010.		201001:siltstone
			clastic_mudstone.			
1.2.2.1.4.3	Shale	clastic	Laminated mudstone that will part or break along thin,	SLTT, 2004 ¹ .	shale	urn:cgi:classifier:CGI:SimpleLithology:
		_mudstone	closely spaced layers parallel to stratification. Related			201001:shale
			Concept: clastic_mudstone.			
1.2.2.2	Organic rich	sedimentary	Sedimentary rock with color, composition, texture and	SLTT, 2004 ¹ .	organic_rich_sedime	urn:cgi:classifier:CGI:SimpleLithology:
	sedimentary	_rock	apparent density indicating greater than 50 % organic		ntary_rock	201001:organic_rich_sedimentary_ro
	rock		content by weight on a moisture-free basis.			ck
1.2.2.2.1	Coal	organic_rich	A consolidated organic sedimentary material having less	ECE-UN, 1998 ¹ .	coal	urn:cgi:classifier:CGI:SimpleLithology:
		_sedimentary	than 75 % moisture. This category includes low, medium,			201001:coal
		_rock	and high rank coals, thus including lignite. Sapropelic coal			
			is not distinguished in this category from humic coals.			
			Formed from the compaction or induration of variously			
			altered plant remains similar to those of peaty deposits.			
1.2.2.2.1.1	Lignite	coal	Coal that has a gross calorific value less than 24 MJ/kg ⁵ ,	ECE-UN, 1998 ¹ .	lignite	urn:cgi:classifier:CGI:SimpleLithology:
			and vitrinite mean random reflectance less than 0.6 % ⁶ .			201001:lignite
			Gross calorific value is recalculated to a moist, ash free			
			basis using bed moisture ⁷ . Includes all low -rank coals,			
			including sub-bitiminous coal. A consolidated, dull, soft			
			brown to black coal having many readily discernible plant			
			fragments set in a finer grained organic matrix. Tends to			
			crack and fall apart on drying. Operationally sub-			
			bituminous and bitiminous coal are qualitatively			
			distinguished based on brown streak for sub-bitiminous			
			coal and black streak for bituminous coal. Synonym: low			
			rank coal. SeeAlso: brow n coal, metalignite, ortholignite,			
			sub-bituminous coal.			

¹ for explanation please see chapter 8: Abbreviations; ⁵ determined in conformance with ISO 1928; ⁶ determined in conformance with ISO 7404-5; ⁷ determined according to ISO 1015 or ISO 5068.

1G-E Broader Definition 1G-EID 1G-ETerm Source CGI URN **Complete URN** Concept 1.2.2.2.1.2 Bituminous ECE-UN. 19981: urn:cgi:classifier:CGI:SimpleLithology: coal Coal that has vitrinite mean random reflectance greater bituminous coal coal than 0.6 % and less than 2 %^{6,} or has a gross calorific Lindner, 1993. 201001:bituminous coal value greater than 24 MJ/kg⁵. Hard, black, organic rich sedimentary rock; contains less than 91 % fixed carbon on a dry, mineral-matter-free basis, and greater than 13-14 % volatiles (dry, ash free). Formed from the compaction or induration of variously altered plant remains similar to those of peaty deposits. Synonym: medium rank coal. SeeAlso: esskohle, fettkohle, flammkohle, gasflammkohle, gaskohle, glanzkohle. 1.2.2.2.1.3 Anthracite coal Coal that has vitrinite mean random reflectance greater ECE-UN. 19981: anthracite coal urn:cgi:classifier:CGI:SimpleLithology: than 2 %⁶. Less than 12-14 % volatiles (dry, ash free), Lindner, 1993. 201001:anthracite coal greater than 91 % fixed carbon (dry, ash free basis). The highest rank coal; very hard, glossy, black, with semimetallic luster, semi conchoidal fracture. Synonym: high rank coal. 1.2.2.3 Carbonate sedimentary Sedimentary rock in which at least 50 % of the primary SLTT, 2004¹. carbonate sedimenta urn:cgi:classifier:CGI:SimpleLithology: sedimentary rock 201001:carbonate sedimentary rock and/or recrystallized constituents are composed of one ry rock rock (or more) of the carbonate minerals calcite, aragonite, magnesite or dolomite. 1.2.2.3.1 Pure carbonate Sedimentary rock in which greater than 90 % of the CGI SimpleLithology, pure carbonate sedi urn:cgi:classifier:CGI:SimpleLithology: carbonate sedimentarv primary and/or recrystallized constituents are carbonate 2010. mentary rock 201001:pure carbonate sedimentary sedimentary rock, minerals. rock rock 1.2.2.3.1.1 Dolomitic or pure Carbonate sedimentary rock with a ratio of magnesium after SLTTs. 2004: dolomitic or magnesi urn:cgi:classifier:CGI:SimpleLithology: Hallsw orth & an_sedimentary_rock 201001:dolomitic_or_magnesian_sedi magnesian carbonate carbonate to calcite (plus aragonite) greater than 1. sedimentary sedimentary Includes dolostone, lime dolostone and magnesite-stone. Knox.1999. mentary rock rock rock

Table 4-6: The 1G-E vocabulary for Sedimentary material (continued).

for explanation please see chapter 8: Abbreviations; ⁵ determined in conformance with ISO 1928; ⁶ determined in conformance with ISO 7404-5.

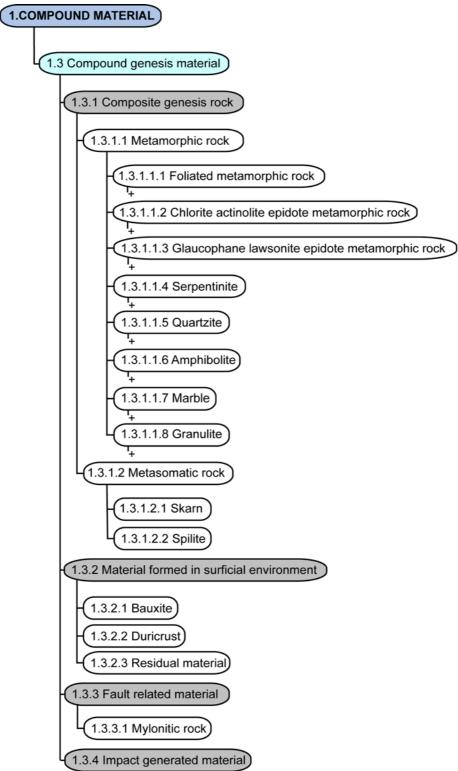
1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.2.2.3.1.1.1	Dolomite	dolomitic_or	Pure carbonate sedimentary rock with a ratio of	CGI SimpleLithology,	dolostone	urn:cgi:classifier:CGI:SimpleLithology:
		_magnesian	magnesium carbonate to calcite (plus aragonite) greater	2010.		201001:dolostone
		_sedimentary	than 1. Synonym: dolostone.			
		_rock				
1.2.2.3.1.2	Limestone	pure	Pure carbonate sedimentary rock with a calcite (plus	CGI SimpleLithology,	limestone	urn:cgi:classifier:CGI:SimpleLithology:
		_carbonate	aragonite) to dolomite ratio greater than 1 to 1. Includes	2010.		201001:limestone
		_sedimentary	limestone and dolomitic limestone. SeeAlso: dolomitic			
		_rock	limestone.			
1.2.2.3.1.2.1	Chalk	limestone	A generally soft, white, very fine-grained, extremely pure,	Harris, 2009.	chalk	urn:cgi:classifier:CGI:SimpleLithology:
			porous limestone. It forms under marine conditions from			201001:chalk
			the gradual accumulation of skeletal elements from minute			
			planktonic green algae (cocoliths), associated with			
			varying proportions of larger microscopic fragments of			
			bivalves, foraminifera and ostracods. It is common to find			
			flint and chert nodules embedded in chalk.			
1.2.2.3.1.2.2	Travertine	limestone	Biotically or abiotically precipitated calcium carbonate,	Neuendorf et al.,	travertine	urn:cgi:classifier:CGI:SimpleLithology:
			from spring-fed, heated, or ambient-temperature water.	2005; Chafetz & Folk,		201001:travertine
			May be white and spongy, various shades of orange, tan	1984.		
			or gray, and ranges to dense, banded or laminated rock.			
			Macrophytes, bryophytes, algae, cyanobacteria and other			
			organisms often colonize the surface of travertine and			
			may be preserved, to produce the porous varieties.			
			SeeAlso: calcareous sinter, onyx marble, tufa.			
1.2.2.3.2	Impure	carbonate	Sedimentary rock in which between 50 and 90 % of the	CGI SimpleLithology,	· ·	urn:cgi:classifier:CGI:SimpleLithology:
	carbonate	_sedimentary	primary and/or recrystallized constituents are composed	2010.	dimentary_rock	201001:impure_carbonate_sedimenta
	sedimentary	_rock	of carbonate minerals. Synonym: marlstone. SeeAlso:			ry_rock
	rock		marlstone.			
1.2.2.3.2.1	Impure	impure	Impure carbonate sedimentary rock with a calcite (plus	CGI SimpleLithology,	impure_limestone	urn:cgi:classifier:CGI:SimpleLithology:
	limestone	_carbonate	aragonite) to dolomite ratio greater than 1. Synonym:	2010.		201001:impure_limestone
		_sedimentary	calcareous marlstone. SeeAlso: marlstone.			
		_rock				

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.2.2.3.2.2	Impure	impure	Impure carbonate sedimentary rock with a ratio of	CGI SimpleLithology,	impure_dolostone	urn:cgi:classifier:CGI:SimpleLithology:
	dolomite	_carbonate	magnesium carbonate to calcite (plus aragonite) greater	2010.		201001:impure_dolostone
		_sedimentary	than 1. Synonym: impure dolostone, dolomitic marlstone.			
		_rock	SeeAlso: marlstone.			
1.2.2.4	Non-clastic	sedimentary	Sedimentary rock that consists of at least 50 % silicate	SLTT, 2004 ¹ .	non_clastic_siliceous	urn:cgi:classifier:CGI:SimpleLithology:
	siliceous	_rock	mineral material, deposited directly by chemical or		_sedimentary_rock	201001:non_clastic_siliceous_sedime
	sedimentary		biological processes at the depositional surface, or in			ntary_rock
	rock		particles formed by chemical or biological processes			
			w ithin the basin of deposition. SeeAlso: chert, flint.			
1.2.2.4.1	Biogenic silica	non_clastic	Sedimentary rock that consists of at least 50 % silicate	based on SLTT,	biogenic_silica_sedim	urn:cgi:classifier:CGl:SimpleLithology:
	sedimentary	_siliceous	mineral material, deposited directly by biological	2004 ¹ ; Hallsw orth &	entary_rock	201001:biogenic_silica_sedimentary_
	rock	_sedimentary	processes at the depositional surface, or in particles	Knox, 1999.		rock
		_rock	formed by biological processes within the basin of			
			deposition. SeeAlso: radiolarite, spicularite, spiculite.			
1.2.2.5	Iron rich	sedimentary	Sedimentary rock that consists of at least 50 % iron-	Hallsw orth & Knox,	iron_rich_sedimentar	urn:cgi:classifier:CGl:SimpleLithology:
	sedimentary	_rock	bearing minerals (hematite, magnetite, limonite-group,	1999; SLTT, 2004 ¹ .	y_rock	201001:iron_rich_sedimentary_rock
	rock		siderite, iron-sulfides), as determined by hand-lens or			
			petrographic analysis. Corresponds to a rock typically			
			containing 15 % iron by w eight.			
1.2.2.6	Generic	sedimentary	Sedimentary rock consisting of less than 30 % gravel-	Pettijohn et al.	generic_mudstone	urn:cgi:classifier:CGI:SimpleLithology:
	mudstone	_rock	size (2 mm) particles and with a mud to sand ratio greater	1987 ^{1,4} .		201001:generic_mudstone
			than 1. Clasts may be of any composition or origin.			
			SeeAlso: argillite.			
1.2.2.6.1	Organic	genereric	Mudstone that contains a significant amount of organic	Neuendorf et al.,	organic_bearing_mud	urn:cgi:classifier:CGI:SimpleLithology:
	bearing	_mudstone	carbon, typically kerogen. Commonly finely laminated,	2005.	stone	201001:organic_bearing_mudstone
	mudstone		brow n or black in color. Synonym: oil shale. SeeAlso: tar			
			sand.			

¹ for explanation please see chapter 8: Abbreviations; ⁴ referenced in Hallsworth & Knox 1999; extrapolated from Folk, 1954, Figure 1a.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.2.3	Chemical	sedimentary	Sedimentary material that consists of at least 50 %	SLTT, 2004 ¹ .	chemical_sedimentar	urn:cgi:classifier:CGI:SimpleLithology:
	sedimentary	_material	material produced by inorganic chemical processes within		y_material	201001:chemical_sedimentary_materi
	material		the basin of deposition. Includes inorganic siliceous,			al
			carbonate, evaporite, iron-rich, and phosphatic sediment			
			classes.			
1.2.3.1	Evaporite	chemical	Nonclastic sedimentary rock composed of at least 50 %	Jackson 1997; SLTT,	evaporite	urn:cgi:classifier:CGI:SimpleLithology:
		_sedimentary	non-carbonate salts, including chloride, sulfate or borate	2004 ¹ .		201001:evaporite
		_material	minerals; formed through precipitation of mineral salts			
			from a saline solution (non-carbonate salt rock).			
1.2.3.1.1	Rock salt	evaporite	Evaporite composed of at least 50 % halite.	CGI SimpleLithology,	rock_salt	urn:cgi:classifier:CGI:SimpleLithology:
				2010.		201001:rock_salt
1.2.3.1.2	Gypsum or	evaporite	Evaporite composed of at least 50 % gypsum or	CGI SimpleLithology,	rock_gypsum_or_anh	urn:cgi:classifier:CGI:SimpleLithology:
	anhydrite		anhydrite.	2010.	ydrite	201001:rock_gypsum_or_anhydrite
(c · ·	<u>.</u>		· · ·		i -	

¹ for explanation please see chapter 8: Abbreviations.



4.2.3 Composite genesis material

Following SLTT 2004, Composite genesis material is defined as material of unspecified consolidation state formed by geological modification of pre-existing materials outside the realm of igneous and sedimentary processes. This includes rocks formed by impact metamorphism, standard dynamothermal metamorphism, brittle deformation, weathering, metasomatism and hydrothermal alteration (diagenesis is a sedimentary process in this context). Therefore Composite genesis material is a heterogeneous category, comprising rocks of different genesis, i.e. Metamorphic and Metasomatic rocks, Material formed in surficial environment (e.g. bauxite), Fault-related material like mylonitic rocks, and Impact generated material (fig. 4-6).

Table 4-7 shows the agreed terms, their definitions and URNs for Composite genesis material.

Figure 4-6: Hierarchical overview representation of the 1G-E vocabulary for Composite genesis material. For clarity only the main groups are indicated.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.3	Composite	compound	Material of unspecified consolidation state formed by	SLTT, 2004 ¹ .	composite_genesis_	urn:cgi:classifier:CGI:SimpleLithology:
	genesis	material	geological modification of pre-existing materials outside	0211, 2001	material	201001:composite_genesis_material
	material		the realm of igneous and sedimentary processes.			
			Includes rocks formed by impact metamorphism, standard			
			dynamothermal metamorphism, brittle deformation,			
			w eathering, metasomatism and hydrothermal alteration			
			(diagenesis is a sedimentary process in this context).			
1.3.1	Composite	composite	Rock formed by geological modification of pre-existing	SLTT, 2004 ¹ .	composite_genesis_r	urn:cgi:classifier:CGI:SimpleLithology:
	genesis rock	_genesis	rocks outside the realm of igneous and sedimentary		ock	201001:composite_genesis_rock
		_material	processes. Includes rocks formed by impact			
			metamorphism, standard dynamothermal metamorphism,			
			brittle deformation, w eathering, metasomatism and			
			hydrothermal alteration (diagenesis is a sedimentary			
			process in this context).			
1.3.1.1	Metamorphic	composite	Rock formed by solid-state mineralogical, chemical and/or	Jackson, 1997.	metamorphic_rock	urn:cgi:classifier:CGI:SimpleLithology:
	rock	rock _genesis_rock	structural changes to a pre-existing rock, in response to			201001:metamorphic_rock
			marked changes in temperature, pressure, shearing			
			stress and chemical environment. SeeAlso: buchite,			
			fulgurite.			
1.3.1.1.01	Foliated	metamorphic	Metamorphic rock in which 10 % or more of the contained	SLTT, 2004 ¹ .	foliated_metamorphic	urn:cgi:classifier:CGI:SimpleLithology:
	metamorphic	_rock	mineral grains are elements in a planar or linear fabric.		_rock	201001:foliated_metamorphic_rock
	rock		Cataclastic or glassy character precludes classification			
			with this concept. SeeAlso: tectonite, whiteschist.			
1.3.1.1.01.1	Gneiss	foliated	Foliated metamorphic rock with bands or lenticles rich in	Neuendorf et al.,	gneiss	urn:cgi:classifier:CGI:SimpleLithology:
		_metamorphic	granular minerals alternating with bands or lenticles rich in	2005.		201001:gneiss
		_rock	minerals with a flaky or elongate prismatic habit. Mylonitic			
			foliation or well developed, continuous schistosity			
			(greater than 50 % of the rock consists of grains			
			participate in a planar or linear fabric) precludes			
			classification with this concept.			

¹ for explanation please see chapter 8: Abbreviations.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.3.1.1.01.1.1	Orthogneiss	gneiss	A gneiss with mineralogy and texture indicating derivation from a phaneritic igneous rock protolith. Typically consists of abundant feldspar, with quartz, and variable hornblende, biotite, and muscovite, with a relatively homogeneous character.		orthogneiss	urn:cgi:classifier:CGl:SimpleLithology: 201001:orthogneiss
1.3.1.1.01.1.2	Paragneiss	gneiss		CGI SimpleLithology, 2010.	paragneiss	urn:cgi:classifier:CGl:SimpleLithology: 201001:paragneiss
1.3.1.1.01.2	Phyllite	foliated _metamorphic _rock	Rock with a well developed, continuous schistosity, an average grain size betw een 0.1 and 0.5 mm, and a silvery sheen on cleavage surfaces. Individual phyllosilicate grains are barely visible with the unaided eye.	IUGS SCMR, 2007 ¹ .	phyllite	urn:cgi:classifier:CGl:SimpleLithology: 201001:phyllite
1.3.1.1.01.3	Slate	foliated _metamorphic _rock	Compact, fine grained rock with an average grain size less than 0.032 mm and a well developed schistosity (slaty cleavage), and hence can be split into slabs or thin plates.	SLTT, 2004; ¹ Neuendorf et al., 2005.	slate	urn:cgi:classifier:CGl:SimpleLithology: 201001:slate
1.3.1.1.01.4	Schist	foliated _metamorphic _rock	Foliated phaneritic metamorphic rock with well developed, continuous schistosity, meaning that greater than 50 % of the rock by volume is mineral grains with a thin tabular, lamellar, or acicular prismatic crystallographic habit that are oriented in a continuous planar or linear fabric.		schist	urn:cgi:classifier:CGI:SimpleLithology: 201001:schist
1.3.1.1.01.4.1	Mica schist	schist	A schist that consists of more than 50 % mica minerals, typically muscovite or biotite. Special type included to distinguish this common variety of schist.	CGI SimpleLithology, 2010.	mica_schist	urn:cgi:classifier:CGl:SimpleLithology: 201001:mica_schist
1.3.1.1.02	Chlorite actinolite epidote metamorphic rock	metamorphic _rock	Metamorphic rock characterized by 50 % or more of combined chlorite, actinolite and epidote. Category for rocks generally named greenschist or greenstone. SeeAlso: greenschist, greenstone.	CGI SimpleLithology, 2010.		urn:cgi:classifier:CGI:SimpleLithology: 201001:chlorite_actinolite_epidote_m etamorphic_rock

for explanation please see chapter 8: Abbreviations.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.3.1.1.03	Glaucophane	metamorphic	A metamorphic rock of roughly basaltic composition,	CGI SimpleLithology,	daucophono, low con	urn:cgi:classifier:CGl:SimpleLithology:
1.3.1.1.03	law sonite	· ·				
		_rock	defined by the presence of glaucophane with law sonite	2010.	· _ ·	201001:glaucophane_law sonite_epid
	epidote		or epidote. Other minerals that may be present include		hic_rock	ote_metamorphic_rock
	metamorphic		jadeite, albite, chlorite, garnet, and muscovite (phengitic			
	rock		w hite mica). Typically fine-grained, dark colored.			
			Category for rocks commonly referred to as blueschist.			
			Synonym: Blauschiefer, Blueschist. SeeAlso: blueschist,			
			glaucophanite.			
1.3.1.1.04	Serpentinite	metamorphic	Rock consisting of more than 75 % serpentine-group	Neuendorf et al.,	serpentinite	urn:cgi:classifier:CGI:SimpleLithology:
		_rock	minerals, e.g. antigorite, chrysotile or lizardite; accessory	2005.		201001:serpentinite
			chlorite, talc and magnetite may be present; derived from			
			hydration of ferromagnesian silicate minerals such as			
			olivine and pyroxene.			
1.3.1.1.05	Quartzite	metamorphic	Metamorphic rock consisting of greater than or equal to	after Neuendorf et	quartzite	urn:cgi:classifier:CGl:SimpleLithology:
		_rock	75 % quartz; typically granoblastic texture. SeeAlso:	al., 2005.		201001:quartzite
			itacolumite.			
1.3.1.1.06	Amphibolite	metamorphic	Metamorphic rock mainly consisting of green, brow n or	Coutinho et al., 2007;	amphibolite	urn:cgi:classifier:CGI:SimpleLithology:
		_rock	black amphibole and plagioclase (including albite), which	IUGS SCMR, 20071.		201001:amphibolite
			combined form 75 % or more of the rock, and both of			
			w hich are present as major constituents. The amphibole			
			constitutes 50 % or more of the total mafic constituents			
			and is present in an amount of 30 % or more; other			
			common minerals include guartz, clinopyroxene, garnet,			
			epidote-group minerals, biotite, titanite and scapolite.			
1.3.1.1.07	Marble	metamorphic	Metamorphic rock consisting of greater than 75 % fine- to	IUGS SCMR, 2007;	marble	urn:cgi:classifier:CGI:SimpleLithology:
		_rock	coarse-grained recrystallized calcite and/or dolomite;	SLTT, 2004 ¹ .		201001:marble
		-	usually with a granoblastic, saccharoidal texture.			

¹ for explanation please see chapter 8: Abbreviations.

1G-EID	1G-ETerm	1G-E Broader Concept	Definition	Source	CGI_URN	Complete URN
1.3.1.1.08	Granulite	metamorphic _rock	Metamorphic rock of high metamorphic grade in w hich Fe- Mg silicate minerals are dominantly hydroxyl-free; feldspar must be present, and muscovite is absent; rock contains less than 90 % mafic minerals, less than 75 % calcite and/or dolomite, less than 75 % quartz, less than 50 % iron-bearing minerals (hematite, magnetite, limonite- group, siderite, iron-sulfides), and less than 50 % calc- silicate minerals. SeeAlso: nebulite. Related Concept: gneiss, granofels.	Fettes & Desmons, 2007; See also: Wimmenauer, 1985; Winkler, 1979; Bow es, 1989.	granulite	urn:cgi:classifier:CGl:SimpleLithology: 201001:granulite
1.3.1.1.09	Eclogite	metamorphic _rock	Metamorphic rock composed of 75 % or more (by volume) omphacite and garnet, both of w hich are present as major constituents, the amount of neither of them being higher than 75 % (by volume); the presence of plagioclase precludes classification as an eclogite.		eclogite	urn:cgi:classifier:CGI:SimpleLithology: 201001:eclogite
1.3.1.1.10	Migmatite	metamorphic _rock	Silicate metamorphic rock that is pervasively heterogeneous on a dm to m scale that typically consists of darker and lighter parts; the darker parts usually exhibit features of metamorphic rocks w hereas the lighter parts are of igneous-looking appearance. SeeAlso: agmatite, diatectite, dictyonite, ditexite, metatexite, nebulite, phlebite, stromatite, venite.	Fettes & Desmons, 2007; IUGS SCMR, 2007 ¹ .	migmatite	urn:cgi:classifier:CGI:SimpleLithology: 201001:migmatite
1.3.1.1.11	Granofels	metamorphic _rock	Metamorphic rock with granoblastic fabric and very little or no foliation (less than 10 % of the mineral grains in the rock are elements in a planar or linear fabric). Grainsize not specified.	SLTT, 2004 ¹ .	granofels	urn:cgi:classifier:CGl:SimpleLithology: 201001:granofels
1.3.1.1.11.1	Hornfels	granofels	Granofels formed by contact metamorphism, composed of a mosaic of equidimensional grains in a characteristically granoblastic or decussate matrix; porphyroblasts or relict phenocrysts may be present. Typically fine grained. SeeAlso: skarn.	IUGS SCMR, 20071.	hornfels	urn:cgi:classifier:CGl:SimpleLithology: 201001:hornfels

¹ for explanation please see chapter 8: Abbreviations.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
1.3.1.2	Metasomatic rock	composite _genesis_rock	Rock that has fabric and composition indicating open- system mineralogical and chemical changes in response to interaction w ith a fluid phase, typically w ater rich. SeeAlso: aceite, argillisite, beresite, endoskarn, fenite, greisen, gumbeite, propylite, rodingite, spilite.	CGI SimpleLithology, 2010.	metasomatic_rock	urn:cgi:classifier:CGl:SimpleLithology: 201001:metasomatic_rock
1.3.1.2.1	Skarn	metasomatic _rock	Metasomatic rock consisting mainly of Ca-, Mg-, Fe-, or Mn-silicate minerals, which are free from or poor in w ater. Typically formed at the contact betw een a silicate rock or magma and a carbonate rock. Synonym: exoskarn, tactite.	Fettes & Desmons, 2007.	skarn	urn:cgi:classifier:CGl:SimpleLithology: 201001:skarn
1.3.1.2.2	Spilite	metasomatic _rock	Altered basic to intermediate composition fine-grained igneous rock in which the feldspar is partially or completely composed of of albite, typically accompanied by chlorite, calcite, quartz, epidote, prehnite, and low - tempaerature hydrous crystallization products. Preservation of eruptive volcanic features is typical. SeeAlso: meta-andesite, metabasalt.	Fettes and Desmon, 2007; Best, 1982; Neuendorf et al., 2005.	spilite	urn:cgi:classifier:CGI:SimpleLithology: 201001:spilite
1.3.2	Material formed in surficial environment	composite _genesis _material	Material that is the product of w eathering processes operating on pre-existing rocks or deposits, analogous to hydrothermal or metasomatic rocks, but formed at ambient Earth surface temperature and pressure.	CGI SimpleLithology, 2010.	material_formed_in_s urficial_environment	urn:cgi:classifier:CGI:SimpleLithology: 201001:material_formed_in_surficial_ environment
1.3.2.1	Bauxite	material _formed_in _surficial _environment	Highly aluminous material containing abundant aluminium hydroxides (gibbsite, less commonly boehmite, diaspore) and aluminium-substituted iron oxides or hydroxides and generally minor or negligible kaolin minerals; may contain up to 20 % quartz. Commonly has a pisolitic or nodular texture, and may be cemented.	Eggleton, 2001.	bauxite	urn:cgi:classifier:CGl:SimpleLithology: 201001:bauxite
1.3.2.2	Duricrust	material _formed_in _surficial _environment	Rock forming a hard crust or layer at or near the Earth's surface at the time of formation, e.g. in the upper horizons of a soil, characterized by structures indicative of pedogenic origin.	CGI SimpleLithology, 2010.	duricrust	urn:cgi:classifier:CGl:SimpleLithology: 201001:duricrust

 Table 4-7: The 1G-E vocabulary for Composite genesis material (continued).

1G-EID	1G-ETerm	1G-E Broader Concept	Definition	Source	CGI_URN	Complete URN
1.3.2.3	Residual	material	Material of composite origin resulting from w eathering	CGI SimpleLithology,	residual_material	urn:cgi:classifier:CGl:SimpleLithology:
	material	_formed_in surficial	processes at the Earth's surface, with genesis dominated by removal of chemical constituents by aqueous leaching.	2010.		201001:residual_material
		-	Minor clastic, chemical, or organic input may also			
			contribute. Consolidation state is not inherent in definition, but typically the material is unconsolidated or w eakly consolidated.			
1.3.3	Fault-related material	composite _genesis _material	Material formed as a result of brittle faulting, composed of greater than 10 % matrix; matrix is fine-grained material caused by tectonic grainsize reduction. Includes cohesive	CGI SimpleLithology, 2010; SLTT, 2004 ¹ .	fault_related_material	urn:cgi:classifier:CGl:SimpleLithology: 201001:fault_related_material
			(cataclasite series) and non-cohesive (breccia-gouge series) material.			
1.3.3.1	Mylonitic rock	fault_related _material	Metamorphic rock characterised by a foliation resulting from tectonic grain size reduction, in w hich more than 10 % of the rock volume has undergone grain size reduction. Includes protomylonite, mylonite, ultramylonite, and blastomylonite. SeeAlso: blastomylonite, mesomylonite, mylonite, protomylonite, ultramylonite.	Marshak & Mitra, 1988.	mylonitic_rock	urn:cgi:classifier:CGl:SimpleLithology: 201001:mylonitic_rock
1.3.4	Impact generated material	composite _genesis _material	Material that contains features indicative of shock metamorphism, such as microscopic planar deformation features within grains or shatter cones, interpreted to be the result of extraterrestrial bolide impact. Includes breccias and melt rocks. SeeAlso: impact breccia, impact metamorphic rock, suevite, tagamite, tektite.	Stöffler & Grieve, 2007; Jackson, 1997.	impact_generated_m aterial	urn:cgi:classifier:CGl:SimpleLithology: 201001:impact_generated_material

¹ for explanation please see chapter 8: Abbreviations.

4.2.4 Breccia and Tuffite

The term Breccia is defined as coarse-grained material composed of angular broken rock fragments, which typically have sharp unworn edges and corners. The fragments may be held together by a mineral cement or enclosed in a fine-grained matrix; they may be consolidated or nonconsolidated and of any composition or origin (Neuendorf et al., 2005).

Based on LeMaitre et al. (2002) and Murawski and Meyer (1998) the term Tuffite represents a commonly laminated or size-graded rock, which consists of more than 50 % particles of indeterminate pyroclastic or epiclastic origin, and less than 75 % particles of clearly pyroclastic origin.

Since both rocks can be generated by many different processes, the terms Breccia and Tuffite cannot strictly be classified in one of the other lithological categories.

Table 4-8 shows the agreed terms, their definitions and URNs for Breccia and Tuffite.

1G-EID	1G-ETerm	1G-E Broader Concept	Definition	Source	CGI_URN	Complete URN
1.4	Breccia	compound _material	Coarse-grained material composed of angular broken rock fragments; the fragments typically have sharp edges and unw orn corners. The fragments may be held together by a mineral cement or enclosed in a fine-grained matrix; they may be consolidated or nonconsolidated. Clasts may be of any composition or origin. In sedimentary environments, breccia is used for material that consists entirely of angular fragments, mostly derived from a single source rock body, as in a rock avalanche deposit, and matrix is interpreted to be the product of comminution of clasts during transport. Diamictite or diamicton is used w hen the material reflects mixing of rock from a variety of sources, some sub angular or subrounded clasts may be present, and matrix is pre-existing fine grained material that is not a direct product of the brecciation/deposition process.	2005.	breccia	urn:cgi:classifier:CGI:SimpleLithology: 201001:breccia
1.5	Tuffite	compound _material	Rock consists of more than 50 % particles of indeterminate pyroclastic or epiclastic origin and less than 75 % particles of clearly pyroclastic origin. Commonly the rock is laminated or exhibits size grading. SeeAlso: volcaniclastic sedimentary rock. Related Concept: clastic_sedimentary_rock.	LeMaitre et al. 2002; Muraw ski and Meyer 1998.	tuffite	urn:cgi:classifier:CGl:SimpleLithology: 201001:tuffite

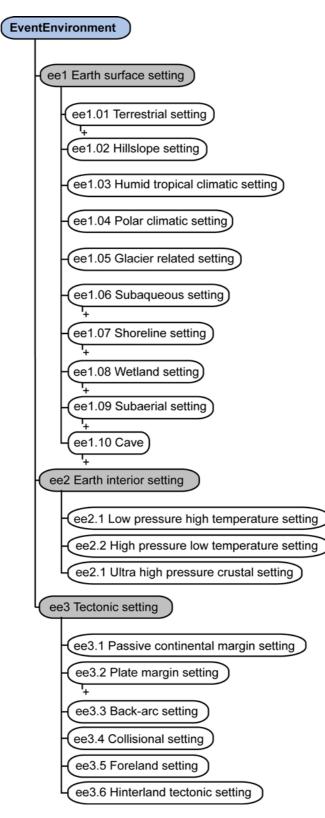
Table 4-8: The 1G-E vocabulary for Breccia and Tuffite.

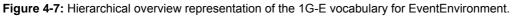
4.3 Genesis

The genetic origin of a rock is described within 1G-E by the properties EventEnvironment and/or EventProcess of GeologicEvent. The use of the property EventProcess is mandatory, that of EventEnvironment is optional, except for the description of Quaternary rocks where it is mandatory.

The vocabulary of the genesis was added during the course of the work, although it is not listed in the project's original work description (DoW), because it is deemed essential for the description of the Quaternary, which covers large areas of Europe.

4.3.1 EventEnviroment


The property EventEnvironment can be used to describe the environment in which the GeologicUnit was formed, e.g. in a 'Basin plain setting' or in a 'volcanic arc setting'. To populate this property one term from table 4-9 should be chosen. Figure 4-7 shows the corresponding concept hierarchy.


4.3.2 EventProcess

With the property EventProcess it is possible to characterise a GeologicUnit more precisely by defining the process of its formation. Typical processes include 'deposition' for sediments or 'intrusion' for plutonic rocks. The EventProcess should always match the age given in the corresponding EventAge of the property GeologicEvents. For rocks that were formed by different processes over a period of time, such as metamorphic rocks, the option GeologicHistory (see section 3.1) ought to be chosen. That property provides the possibility of recording several events by age, process and environment.

The EventProcess property should be populated with the URN of one of the concepts given in table 4-10. The concept hierarchy is shown in figure 4-8.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
ee1	Earth surface		Geologic environments on the surface of the solid Earth.	CGI/GeoSciML.	earth_surface_settin	urn:cgi:classifier:CGI:E
	setting		Hierarchy presented here is based on assumption that a		g	ventEnvironment:2010
			particular setting may be specified by a combination of a			01:earth_surface_setti
			climatic setting with one or more process or			ng
			geomorphically defined settings.			
ee1.01	Terrestrial	earth_surface	Setting characterised by absence of direct marine	CGI/GeoSciML.	terrestrial_setting	urn:cgi:classifier:CGI:E
	setting	_setting	influence. Most of the subaerial settings are also			ventEnvironment:2010
			terrestrial, but lacustrine settings, w hile terrestrial, are not			01:terrestrial_setting
			subaerial, so the subaerial settings are not included as			
			subcategories.			
ee1.01.1	Lacustrine	terrestrial	Setting associated with a lake. Alw ays overlaps with	CGI/GeoSciML.	lacustrine_setting	urn:cgi:classifier:CGI:E
	setting	_setting	terrestrial, may overlap with subarial, subaqueous, or			ventEnvironment:2010
			shoreline.			01:lacustrine_setting
ee1.01.2	River plain	terrestrial	Geologic setting dominated by a river system; river plains	CGI/GeoSciML.	river_plain_system_s	urn:cgi:classifier:CGI:E
	system setting	_setting	may occur in any climatic setting. Includes active		etting	ventEnvironment:2010
			channels, abandoned channels, levees, oxbow lakes,			01:river_plain_system_
			flood plain. May be part of an alluvial plain that includes			setting
			terraces composed of abandoned river plain deposits.			
ee1.02	Hillslope	earth_surface	Earth surface setting characterized by surface slope	SLTT, 2004 ¹ ;	hillslope_setting	urn:cgi:classifier:CGI:E
	setting	_setting	angles high enough that gravity alone becomes a	Haw ley &		ventEnvironment:2010
			significant factor in geomorphic development, as well as	Parsons, 1980.		01:hillslope_setting
			base-of-slope areas influenced by hillslope processes.			
			Hillslope activities include creep, sliding, slumping, falling,			
			and other dow nslope movements caused by slope			
			collapse induced by gravitational influence on earth			
			materials. May be subaerial or subaqueous.			
ee1.03		earth_surface	Setting with hot, humid climate influenced by equatorial air	Cleland et al.,	· _	urn:cgi:classifier:CGI:E
	climatic setting	_setting	masses, no winter season.	1997.	c_setting	ventEnvironment:2010
						01:humid_tropical_clim
						atic_setting

Table 4-9: The 1G-E vocabulary for EventEnvironment.

1G-EID	1G-ETerm	1G-E Broader Concept	Definition	Source	CGI_URN	Complete URN
		Concept				
ee1.04	Polar climatic setting	earth_surface _setting	Setting with climate dominated by temperatures below the freezing temperature of water. Includes polar deserts because precipitation is generally scant at high latitude. Climate controlled by arctic air masses, cold dry enviornment with short summer.	Cleland et al., 1997.	polar_climatic_setting	urn:cgi:classifier:CGI:E ventEnvironment:2010 01:polar_climatic_settin g
ee1.05	Glacier related setting	earth_surface _setting	Earth surface setting with geography defined by spatial relationship to glaciers (e.g. on top of a glacier, next to a glacier, in front of a glacier). Processes related to moving ice dominate sediment transport and deposition and landform development. Includes subaqueous, shoreline, and terrestrial settings that are impacted by the presence of glaciers. Considered a geographically defined setting in that a glacier is a geographic feature.	CGI/GeoSciML.	glacier_related_settin g	urn:cgi:classifier:CGI:E ventEnvironment:2010 01:glacier_related_setti ng
ee1.06	Subaqueous setting	earth_surface _setting	Setting situated in or under permanent, standing water. Used for marine and lacustrine settings, but not for fluvial settings.	based on SLTT, 2004 ¹ .	subaqueous_setting	urn:cgi:classifier:CGI:E ventEnvironment:2010 01:subaqueous_settin g
ee1.06.1	Marine setting	subaqueous_s etting	Setting characterised by location under the surface of the sea.	SLTT, 2004 ¹ .	marine_setting	urn:cgi:classifier:CGl:E ventEnvironment:2010 01:marine_setting
ee1.06.1.1	Biological reef setting	marine_setting	A ridgelike or moundlike structure, layered or massive, built by sedentary calcareous organisms, especially corals, and consisting mostly of their remains; it is w ave- resistant and stands topographically above the surrounding contemporaneously deposited sediment.	Neuendorf et al., 2005.	biological_reef_settin g	urn:cgi:classifier:CGI:E ventEnvironment:2010 01:biological_reef_setti ng
ee1.06.1.2	Basin plain setting	marine_setting	Near flat areas of ocean floor, slope less than 1:1000; generally receives only distal turbidite and pelagic sediments.	Bates & Jackson, 1987; Heezen & Laughton, 1963; Reading, 1978.	basin_plain_setting	urn:cgi:classifier:CGI:E ventEnvironment:2010 01:basin_plain_setting

¹ for explanation please see chapter 8: Abbreviations.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
ee1.06.1.3	Continental	marine_setting	That part of the ocean floor that is between the shoreline	SLTT, 2004 ¹ ;	continental_shelf_set	urn:cgi:classifier:CGI:E
	shelf setting		and the continental slope (or, when there is no noticeable	Jackson, 1997.	ting	ventEnvironment:2010
			continental slope, a depth of 200 m). It is characterized by			01:continental_shelf_s
			its gentle slope of 0.1 degree. Continental shelves have a			etting
			classic shoreline-shelf-slope profile termed 'clinoform'.			
ee1.06.1.4	Epicontinental	marine_setting	Marine setting situated within the interior of the continent,	SLTT, 2004 ¹ .	epicontinental_marine	urn:cgi:classifier:CGI:E
	marine setting		rather than at the edge of a continent.		_setting	ventEnvironment:2010
						01:epicontinental_mari
						ne_setting
ee1.06.1.5	Bathyal	marine_setting	The ocean environment at water depths between 200	Neuendorf et	bathyal	urn:cgi:classifier:CGI:E
			and 3500 m.	al., 2005.		ventEnvironment:2010
						01:bathyal
ee1.06.1.6	Ocean	marine_setting	Broad category for subaqueous marine settings	CGI/GeoSciML.		urn:cgi:classifier:CGI:E
	highland		characterised by significant relief above adjacent sea			ventEnvironment:2010
	setting		floor.			01:ocean_highland_set
						ting
ee1.06.1.6.1	Mid ocean	ocean_highlan	Ocean highland associated with a divergent continental	CGI/GeoSciML.	mid_ocean_ridge_set	urn:cgi:classifier:CGI:E
	ridge setting	d_setting	margin (spreading center). Setting is characterised by		ting	ventEnvironment:2010
			active volcanism, locally steep relief, hydrothermal			01:mid_ocean_ridge_s
			activity, and pelagic sedimentation.			etting
ee1.06.1.6.2	Oceanic	ocean_highlan	Region of elevated ocean crust that commonly rises to	Reading, 1978.	oceanic_plateau_setti	urn:cgi:classifier:CGI:E
	plateau setting	d_setting	w ithin 2 to 3 km of the surface above an abyssal sea		ng	ventEnvironment:2010
			floor that lies several km deeper. Climate and w ater			01:oceanic_plateau_se
			depths are such that a marine carbonate platform does not develop.			tting
	1		· ·			

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
4.07						
ee1.07	Shoreline	earth_surface	Geologic settings characterised by location adjacent to	based on	shoreline_settings	urn:cgi:classifier:CGI:E
	settings	_setting	the ocean or a lake. A zone of indefinite width (may be	Neuendorf et		ventEnvironment:2010
			many km), bordering a body of water that extends from	al., 2005.		01:shoreline_settings
			the water line inland to the first major change in landform			
			features. Includes settings that may be subaerial,			
			intermittently subaqueous, or shallow subaqueous, but			
			are intrinsically associated with the interface between			
			land areas and water bodies.			
ee1.07.1	Deltaic system					urn:cgi:classifier:CGI:E
	setting	_settings	a standing body of water (ocean or lake). The delta forms	Jackson, 1997.	g	ventEnvironment:2010
			a triangular or fan-shaped plain of considerable area.			01:deltaic_system_sett
			Subaerial parts of the delta are crossed by many			ing
			distributaries of the main river, and commonly extend			
			beyond the general trend of the coast. Subaqueous parts			
			of the delta merge with the adjacent basin floor, and are			
			progressively influenced by non-fluvial processes. Deltas			
			result from the accumulation of sediment supplied by the			
			river in such quantities that it is not removed by tides,			
			w aves, and currents.			
ee1.07.2	Coastal plain	shoreline	A low relief plain bordering a water body extending inland		coastal_plain_setting	urn:cgi:classifier:CGI:E
	setting	_settings	to the nearest elevated land, sloping very gently tow ards	Neuendorf et		ventEnvironment:2010
			the water body. Distinguished from alluvial plain by	al., 2005.		01:coastal_plain_settin
			presence of relict shoreline-related deposits or			g
			morphology.			
ee1.08	Wetland	earth_surface	Setting characterised by gentle surface slope, and at	CGI/GeoSciML	w etland_setting	urn:cgi:classifier:CGI:E
	setting	_setting	least intermittent presence of standing water, which may			ventEnvironment:2010
			be fresh, brackish, or saline. Wetland may be terrestrial			01:w etland_setting
			setting or shoreline setting.			
ee1.08.1	Bog	w etland	Waterlogged, spongy ground, consisting primarily of		bog	urn:cgi:classifier:CGI:E
		_setting	mosses, containing acidic, decaying vegetation that may	SLTT, 20041;		ventEnvironment:2010
			develop into peat.			01:bog

¹ for explanation please see chapter 8: Abbreviations.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
ee1.08.1.1	Basin Bog	bog	An ombrotrophic or ombrogene peat/bog w hose nutrient	1G-E WP3;	basin_bog	urn:cgi:classifier:CGI:E
			supply is exclusively from rain water (including snow and			ventEnvironment:2010
			atmospheric fallout) therefore making nutrients extremly	al., 2005.		01:basin_bog
			oligotrophic.			
ee1.08.1.2	Blanket Bog	bog	Topogene bog/peat w hose moisture content is largely	1G-E WP3;	blanket_bog	urn:cgi:classifier:CGI:E
			dependent on surface water. It is relatively rich in plant	Neuendorf et		ventEnvironment:2010
			nutrients, nitrogen, and mineral matter, mildly acidic to	al., 2005.		01:blanket_bog
			nearly neutral, and contains little or no cellulose; forms in			
			topographic depressions with essential stagnat or non-			
			moving minerotrophic water supply.			
ee1.09	Subaerial	earth_surface	Setting at the interface betw een the solid earth and the	Neuendorf et	subaerial_setting	urn:cgi:classifier:CGI:E
	setting	_setting	atmosphere, includes some shallow subaqueous settings	al., 2005.		ventEnvironment:2010
			in river channels and playas. Characterised by conditions			01:subaerial_setting
			and processes, such as erosion, that exist or operate in			
			the open air on or immediately adjacent to the land			
			surface.			
ee1.09.1	Aeolian	subaerial_setti	Sedimentary setting in which wind is the dominant	CGI/GeoSciML.	aeolian_process_sett	urn:cgi:classifier:CGI:E
	process	ng	process producing, transporting, and depositing sediment.		ing	ventEnvironment:2010
	setting		Typically has low -relief plain or piedmont slope			01:aeolian_process_s
			physiography. Synonym: eolian setting, Sand dune			etting
			system setting.			
ee1.09.2	Piedmont slope	subaerial	Location on gentle slope at the foot of a mountain;	Hawley &	piedmont_slope_syst	urn:cgi:classifier:CGI:E
	system setting	_setting	generally used in terms of intermontane-basin terrain.	Parsons, 1980.	em_setting	ventEnvironment:2010
			Main components include: (a) an erosional surface on			01:piedmont_slope_sy
			bedrock adjacent to the receding mountain front			stem_setting
			(pediment, rock pediment); (b) a constructional surface			
			comprising individual alluvial fans and interfan valleys,			
			also near the mountain front; and (c) a distal complex of			
			coalescent fans (bajada), and alluvial slopes without fan			
			form. Piedmont slopes grade to basin-floor depressions			
			w ith alluvial and temporary lake plains or to surfaces			
			associated with through drainage.			

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
ee1.10	Cave	earth_surface	A natural underground open space; it generally has a	Neuendorf et	cave	urn:cgi:classifier:CGI:E
		_setting	connection to the surface, is large enough for a person to	al., 2005.		ventEnvironment:2010
			enter, and extends into darkness. The most common type			01:cave
			of cave is formed in limestone by dissolution. Synonym:			
			cavern.			
ee2	Earth interior		Geologic environments within the solid Earth.	CGI/GeoSciML.	earth_interior_setting	urn:cgi:classifier:CGI:E
	setting					ventEnvironment:2010
						01:earth_interior_settin
						g
ee2.1	Low pressure	earth_interior_	Setting characterised by temperatures significantly higher	CGI/GeoSciML.	low_pressure_high_t	urn:cgi:classifier:CGI:E
	high	setting	that those associated with normal continental geothermal		emperature_setting	ventEnvironment:2010
	temperature		gradient.			01:low_pressure_high
	setting					_temperature_setting
ee2.2	High pressure	earth_interior_	High pressure environment characterised by geothermal	CGI/GeoSciML.	high_pressure_low_t	urn:cgi:classifier:CGI:E
	low	setting	gradient significantly low er than standard continental		emperature_earth_int	ventEnvironment:2010
	temperature		geotherm; enviornment in w hich blueschist facies		erior_setting	01:high_pressure_low
	Earth interior		metamorphic rocks form. Typically associated with			_temperature_earth_int
	setting		subduction zones.			erior_setting
ee2.3	Ultra high	earth_interior_	Setting characterised by pressures characteristic of	CGI/GeoSciML.	ultra_high_pressure_	urn:cgi:classifier:CGI:E
	pressure	setting	upper mantle, but indicated by mineral assemblage in		crustal_setting	ventEnvironment:2010
	crustal setting		crustal composition rocks.			01:ultra_high_pressure
						_crustal_setting
ee3	Tectonic		Setting defined by relationships to tectonic plates on or in	CGI/GeoSciML.	tectonic_setting	urn:cgi:classifier:CGI:E
	setting		the Earth.			ventEnvironment:2010
						01:tectonic_setting
ee3.1	Passive	tectonic	Boundary of continental crust into oceanic crust of an	CGI/GeoSciML.	passive_continetal_m	urn:cgi:classifier:CGI:E
	continental	_setting	oceanic basin that is not a subduction zone or transform		argin_setting	ventEnvironment:2010
	margin setting		fault system. Generally is rifted margin formed when			01:passive_continetal_
			ocean basin was initially formed.			margin_setting
ee3.2	Plate margin	tectonic	An active margin occurs where the continental margin is	1GE WP3;	plate_margin_setting	urn:cgi:classifier:CGI:E
	setting	_setting	a plate boundary.	Neuendorf et		ventEnvironment:2010
				al., 2005.		01:plate_margin_settin
						g

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
ee3.2.1	Forearc	plate_margin	Tectonic setting between a subduction-related trench and	1GE WP3;	forearc_margin_setti	urn:cgi:classifier:CGI:E
	setting	setting	a volcanic arc	Neuendorf et	ng	ventEnvironment:2010
				al., 2005.		01:forearc margin set
						ting
ee3.2.2	Volcanic arc	plate_margin	A generally curvillinear belt of volcanoes above a	1GE WP3;	volcanic_arc_setting	urn:cgi:classifier:CGI:E
	setting	_setting	subduction zone.	Neuendorf et		ventEnvironment:2010
				al., 2005.		01:volcanic_arc_settin
						g
ee3.3	Back-arc	tectonic	Tectonic setting adjacent to a volcanic arc formed above	CGI/GeoSciML.	back_arc_setting	urn:cgi:classifier:CGI:E
	setting	_setting	a subduction zone. The back arc setting is on the			ventEnvironment:2010
			opposite side of the volcanic arc from the trench at which			01:back_arc_setting
			oceanic crust is consumed in a subduction zone. Back			
			arc setting includes terrane that is affected by plate			
			margin and arc-related processes.			
ee3.4	Collisional	tectonic	Tectonic setting in w hich two continental crustal plates	CGI/GeoSciML.	collisional_setting	urn:cgi:classifier:CGI:E
	setting	_setting	impact and are sutured together after intervening oceanic			ventEnvironment:2010
			crust is entirely consumed at a subduction zone			01:collisional_setting
			separating the plates. Such collision typically involves			
			major mountain forming events, exemplified by the modern			
			Alpine and Himalayan mountain chains.			
ee3.5	Foreland	tectonic	The exterior area of an orogenic belt where deformation	1GE WP3;	foreland_setting	urn:cgi:classifier:CGI:E
	setting	_setting	occurs without significant metamorphism. Generally the	Neuendorf et		ventEnvironment:2010
			foreland is closer to the continental interior than other	al., 2005.		01:foreland_setting
			portions of the orogenic belt are.			
ee3.6	Hinterland	tectonic	Tectonic setting in the internal part of an orogenic belt,	CGI/GeoSciML.	hinterland_setting	urn:cgi:classifier:CGI:E
	tectonic	_setting	characterised by plastic deformation of rocks			ventEnvironment:2010
	setting		accompanied by significant metamorphism, typically			01:hinterland_setting
			involving crystalline basement rocks. Typically denotes			
			the most structurally thickened part of an orogenic belt,			
			betw een a magmatic arc or collision zone and a more			
			'external' foreland setting.			

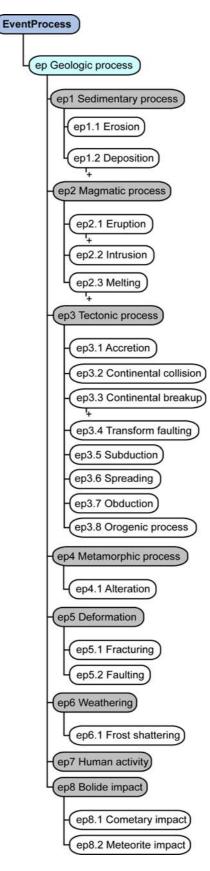


Figure 4-8: Hierarchical overview presentation of the 1G-E vocabulary for EventProcess.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concepts				
ер	Geologic		Process that effects the geologic record.	CGI/GeoSciML.	geologic_process	urn:cgi:classifier:CGI:EventProcess:2
	process					01001:geologic_process
ep1	Sedimentary	geologic	A phenomenon that changes the distribution or physical	CGI/GeoSciML.	sedimentary_process	urn:cgi:classifier:CGI:EventProcess:2
	process	_process	properties of sediment at or near the earth's surface.			01001:sedimentary_process
ep1.1	Erosion	sedimentary	The process of disaggregation of rock and displacement	CGI/GeoSciML.	erosion	urn:cgi:classifier:CGI:EventProcess:2
		_process	of the resultant particles (sediment) usually by the agents			01001:erosion
			of currents such as, wind, water, or ice by dow nward or			
			dow n-slope movement in response to gravity or by living			
			organisms (in the case of bioerosion).			
ep1.2	Deposition	geologic	Accumulation of material; the constructive process of	Neuendorf et	deposition	urn:cgi:classifier:CGl:EventProcess:2
		_process	accumulation of sedimentary particles, chemical	al., 2005.		01001:deposition
			precipitation of mineral matter from solution, or the			
			accumulation of organic material on the death of plants			
			and animals.			
ep1.2.1	Mechanical	deposition	Process by w hich material that is being transported as	SLTT, 2004 ¹ .	mechanical_depositio	urn:cgi:classifier:CGl:EventProcess:2
	deposition		particles by moving air, water, ice, or other fluid comes to		n	01001:mechanical_deposition
			rest and accumulates.			
ep1.2.1.1	Turbidity	mechanical	Deposition from a turbulent, low concentration sediment-	Postma, 1986.	turbidity_current_dep	urn:cgi:classifier:CGl:EventProcess:2
	current	_deposition	water mixture.		osition	01001:turbidity_current_deposition
	deposition					
ep1.2.1.2	Debris flow	mechanical	Laminar high-concentration, generally cohesionless	Postma, 1986.	debris_flow_depositi	urn:cgi:classifier:CGl:EventProcess:2
	deposition	_deposition	deposition process. Flow types included liquefied flow,		on	01001:debris_flow_deposition
			fluidised flow, grain flow, traction carpet or modified grain			
			flow.			
2			1			

Table 4-10: The 1G-E vocabulary for EventProcess.

ep1.2.1.3Mass wasting depositionA general term for the dislodgement and dow nslope transport of soil and rock material under the direct application of gravitational body stresses. In contrast to other erosion processes, the debris removed by mass w asting is not carried within, on, or under another medium. The mass properties of the material being transported depend on the interaction of the soil and rock particles and on the moisture content. Mass wasting includes slow displacements, such as creep and solifluction, and rapid movements such as rockfalls, rocksildes, and cohesive debris flows. Includes both subaerial mass-w asting processes.Neuendorf et al., 2005.Neuendorf et nNeuendorf et al., 2005.Meundor fet nep1.2.3OrganicdepositionSediment accumulation of biologically produced organicCGl/GeoSciML.organic_accumulationurn:cgi:classifier:CGLE	
deposition_deposition_depositiontransport of soil and rock material under the direct application of gravitational body stresses. In contrast to other erosion processes, the debris removed by mass w asting is not carried within, on, or under another medium. The mass properties of the material being transported depend on the interaction of the soil and rock particles and on the moisture content. Mass w asting includes slow displacements, such as creep and solifluction, and rapid movements such as rockfalls, rockslides, and cohesive debris flows. Includes both subaerial mass-w asting processes and subaqueous mass-w asting processes and subaqueous mass-w asting processes.Neuendorf et al., 2005.chemical_precipitationurn:cgi:classifier:CGI:E 01001:mass_iffer:CGI:Eep1.2.3OrganicdepositionSediment accumulation of biologically produced organicCGI/GeoSciML.organic_accumulationurn:cgi:classifier:CGI:E	
ep1.2.2Chemical precipitationdepositionThe deposition of gravitational body stresses. In contrast to other erosion processes, the debris removed by mass w asting is not carried within, on, or under another medium. The mass properties of the material being transported depend on the interaction of the soil and rock particles and on the moisture content. Mass w asting includes slow displacements, such as creep and solifluction, and rapid movements such as rockfalls, rockslides, and cohesive debris flow s. Includes both subaerial mass-w asting processes.Neuendorf et al., 2005.chemical_precipitationurn:cgi:classifier:CGI:E 01001:chemical_precipitatio n urn:cgi:classifier:CGI:Eep1.2.3OrganicdepositionSediment accumulation of biologically produced organicCGI/GeoSciML.organic_accumulationurn:cgi:classifier:CGI:E	_deposition
other erosion processes, the debris removed by mass w asting is not carried within, on, or under another medium. The mass properties of the material being transported depend on the interaction of the soil and rock particles and on the moisture content. Mass w asting includes slow displacements, such as creep and solifluction, and rapid movements such as rockfalls, rockslides, and cohesive debris flow s. Includes both subaerial mass-w asting processes.Neuendorf et al., 2005.chemical_precipitatio nurn:cgi:classifier:CGI:E 01001:chemical_precipitep1.2.3OrganicdepositionSediment accumulation of biologically produced organicCGI/GeoSciML.organic_accumulation urn:cgi:classifier:CGI:E	
ep1.2.2Chemical precipitationdepositionThe deposition of mineral matter by precipitation from solution or as a result of chemical reactions. May be sedimentary or hydrothermal.Neuendorf et al., 2005.chemical_precipitation nurn:cgi:classifier:CGI:E 0101:chemical_precipitep1.2.3OrganicdepositionSediment accumulation of biologically produced organicCGI/GeoSciML.organic_accumulationorganic_accumulationurn:cgi:classifier:CGI:E	
ep1.2.2Chemical precipitationdepositionThe deposition of mineral matter by precipitation from solution or as a result of chemical reactions. May be sedimentary or hydrothermal.Neuendorf et al., 2005.chemical_precipitation nurn:cgi:classifier:CGI:E organicep1.2.3OrganicdepositionSediment accumulation of biologically produced organicCGI/GeoSciML.organic_accumulationurn:cgi:classifier:CGI:E	
ep1.2.2Chemical precipitationdepositionThe deposition of mineral matter by precipitation from solution or as a result of chemical reactions. May be sedimentary or hydrothermal.Neuendorf et al., 2005.chemical_precipitation nurn:cgi:classifier:CGI:E organic_accumulationep1.2.3OrganicdepositionSediment accumulation of biologically produced organicCGI/GeoSciML.organic_accumulationurn:cgi:classifier:CGI:E organic_accumulation	
Particles and on the moisture content. Mass w asting includes slow displacements, such as creep and solifluction, and rapid movements such as rockfalls, rockslides, and cohesive debris flow s. Includes both subaerial mass-w asting processes and subaqueous mass-w asting processes.Neuendorf et al., 2005.Chemical_precipitation nurn:cgi:classifier:CGI:E 01001:chemical_precipiep1.2.3OrganicdepositionSediment accumulation of biologically produced organicCGI/GeoSciML.organic_accumulationurn:cgi:classifier:CGI:E 01001:chemical_precipi	
Image: space of the space of	
ep1.2.2Chemical precipitationdepositionThe deposition of mineral matter by precipitation from solution or as a result of chemical reactions. May be sedimentary or hydrothermal.Neuendorf et al., 2005.chemical_precipitation nurn:cgi:classifier:CGI:E 01001:chemical_precipitation nep1.2.3OrganicdepositionSediment accumulation of biologically produced organicCGI/GeoSciML.organic_accumulationurn:cgi:classifier:CGI:E 01001:chemical_precipitation	
Image: subscriptionrockslides, and cohesive debris flow s. Includes both subaerial mass-wasting processes and subaqueous mass-wasting processes.Image: subscriptionImage: subscriptionImage: subscriptionep1.2.2Chemical precipitationdepositionThe deposition of mineral matter by precipitation from solution or as a result of chemical reactions. May be sedimentary or hydrothermal.Neuendorf et al., 2005.chemical_precipitation nurn:cgi:classifier:CGI:E 01001:chemical_precipitation nep1.2.3OrganicdepositionSediment accumulation of biologically produced organicCGI/GeoSciML.organic_accumulation urn:cgi:classifier:CGI:E	
Image: subactive constraint of the subactive constraint of the solution of the	
end mass-w asting processes. mass-w asting processes. mass-w asting processes. ep1.2.2 Chemical precipitation deposition The deposition of mineral matter by precipitation from solution or as a result of chemical reactions. May be sedimentary or hydrothermal. Neuendorf et al., 2005. chemical_precipitation n urn:cgi:classifier:CGI:E 01001:chemical_precipitation ep1.2.3 Organic deposition Sediment accumulation of biologically produced organic CGI/GeoSciML. organic_accumulation urn:cgi:classifier:CGI:E	
ep1.2.2Chemical precipitationdepositionThe deposition of mineral matter by precipitation from solution or as a result of chemical reactions. May be sedimentary or hydrothermal.Neuendorf et al., 2005.chemical_precipitation nurn:cgi:classifier:CGI:E 01001:chemical_precipitation 01001:chemical_precipitationep1.2.3OrganicdepositionSediment accumulation of biologically produced organicCGI/GeoSciML.organic_accumulationurn:cgi:classifier:CGI:E	
precipitation solution or as a result of chemical reactions. May be sedimentary or hydrothermal. al., 2005. n 01001:chemical_precipitation ep1.2.3 Organic deposition Sediment accumulation of biologically produced organic CGl/GeoSciML. organic_accumulation urn:cgi:classifier:CGl:EE	
ep1.2.3 Organic deposition sedimentary or hydrothermal. CGI/GeoSciML. organic_accumulation urn:cgi:classifier:CGI:E	EventProcess:2
ep1.2.3 Organic deposition Sediment accumulation of biologically produced organic CGI/GeoSciML. organic_accumulation urn:cgi:classifier:CGI:E	pitation
	EventProcess:2
accumulation material, as in bog or coal sw amps. 01001:organic_accumu	ulation
ep1.2.4 Biological deposition The deposition of minerals from solution by the agency of CGI/GeoSciML. biological_precipitatio urn:cgi:classifier:CGI:E	ventProcess:2
precipitation organisms. n 01001:biological_precip	pitation
ep2 Magmatic geologic A process involving melted rock (magma). CGI/GeoSciML. magmatic_process urn:cgi:classifier:CGI:E	-ventProcess:2
process _process 01001:magmatic_proce	ess
ep2.1 Eruption magmatic The ejection of volcanic materials (lava, pyroclasts, and Neuendorf et eruption urn:cgi:classifier:CGI:E	-ventProcess:2
_process volcanic gases) onto the Earth's surface, either from a al., 2005. 01001:eruption	
central vent or from a fissure or group of fissures.	
ep2.1.1 Pyroclastic eruption Eruption produced by the generation and rapid expansion Orton, 1996. pyroclastic_eruption urn:cgi:classifier:CGI:E	ventProcess:2
eruption of a gas phase that disrupts magma, surrounding wall 01001:pyroclastic_eruption	ption
rock or sediment.	

Table 4-10: The 1G-E vocabulary for EventProcess (continued).

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concepts				
ep2.1.1.1	Vulcanian	pyroclastic	Eruption characterised by the explosive ejection of	Neuendorf et	vulcanian_eruption	urn:cgi:classifier:CGI:EventProcess:2
	eruption	_eruption	fragments of new lava, commonly incandescent when	al., 2005.		01001:vulcanian_eruption
			they leave the vent but either solid or too viscous to			
			assume any appreciable degree of rounding during their			
			flight through the air. With these there are often			
			breadcrust bombs or blocks, and generally large			
			proportions of ash.			
ep2.1.2	Strombolian	eruption	Eruption characterised by jetting of clots or 'fountains' of	Neuendorf et	strombolian_eruption	urn:cgi:classifier:CGl:EventProcess:2
	eruption		fluid, basaltic lava from a central crater.	al., 2005.		01001:strombolian_eruption
ep2.2	Intrusion	magmatic	The process of emplacement of magma in pre-existing	Neuendorf et	intrusion	urn:cgi:classifier:CGI:EventProcess:2
		_process	rock.	al., 2005.		01001:intrusion
ep2.3	Melting	magmatic	Change of state from solid to liquid.	CGI/GeoSciML.	melting	urn:cgi:classifier:CGI:EventProcess:2
		_process				01001:melting
ep2.3.1	Partial melting	melting	Process of melting involving only some of the mineral	Neuendorf et	partial_melting	urn:cgi:classifier:CGI:EventProcess:2
			phases in a rock, to produce a mixture of melt and	al., 2005.		01001:partial_melting
			residual particles.			
ерЗ	Tectonic	geologic	Processes related to the interaction betw een or	CGI/GeoSciML.	tectonic_process	urn:cgi:classifier:CGI:EventProcess:2
	process	_process	deformation of rigid plates forming the crust of the Earth.			01001:tectonic_process
ep3.1	Accretion	tectonic	The addition of material to a continent. Typically involves	Neuendorf et	accretion	urn:cgi:classifier:CGI:EventProcess:2
		_process	convergent or transform motion.	al., 2005.		01001:accretion
ep3.2	Continental	tectonic	The amalgamation of two continental plates or blocks	CGI/GeoSciML.	continental_collision	urn:cgi:classifier:CGI:EventProcess:2
	collision	_process	along a convergent margin.			01001:continental_collision
ep3.3	Continental	tectonic	Fragmentation of a continental plate into two or more	CGI/GeoSciML.	continental_breakup	urn:cgi:classifier:CGI:EventProcess:2
	breakup	_process	smaller plates; may involve rifting or strike slip faulting.			01001:continental_breakup
ep3.3.1	Rifting	continental	Extension of the crust to form one or more long, narrow	Neuendorf et	rifting	urn:cgi:classifier:CGI:EventProcess:2
		_breakup	graben of regional extent.	al., 2005.		01001:rifting

Table 4-10: The 1G-E vocabulary for EventProcess (continued).

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concepts				
ep3.4	Transform	tectonic	A strike-slip fault that links two other faults or two other	Neuendorf et	transform_faulting	urn:cgi:classifier:CGI:EventProcess:2
	faulting	process	plate boundaries (e.g. two segments of a mid-ocean	al., 2005.		01001:transform faulting
	U U		ridge). Transform faults often exhibit characteristics that	- ,		
			distinguish them from transcurrent faults: (1) for			
			transform faults formed at the same time as the faults			
			they link, slip on the transform fault has equal magnitude			
			at all points along the transform; slip magnitude on the			
			transform fault can exceed the length of the transform			
			fault, and slip does not decrease to zero at the fault			
			termini; (2) for transform faults linking tw o similar			
			features, e.g. if two mid-ocean ridge segments linked by a			
			transform have equal spreading rates, then the length of			
			the transform does not change as slip accrues on it.			
ep3.5	Subduction	tectonic	The process of one lithospheric plate descending beneath	Neuendorf et	subduction	urn:cgi:classifier:CGI:EventProcess:2
		_process	another.	al., 2005.		01001:subduction
ep3.6	Spreading	tectonic	A process whereby new oceanic crust is formed by	Neuendorf et	spreading	urn:cgi:classifier:CGl:EventProcess:2
		_process	upw elling of magma at the center of mid-ocean ridges and	al., 2005.		01001:spreading
ep3.7	Obduction	tectonic	The overthrusting of continental crust by oceanic crust or	1G-E WP3.	obduction	urn:cgi:classifier:CGI:EventProcess:2
		_process	mantle rocks at a convergent plate boundary.			01001:obduction
ep3.8	Orogenic	tectonic	Mountain building process. Synonym: Orogenesis.	Neuendorf et	orogenic_process	urn:cgi:classifier:CGl:EventProcess:2
	process	_process		al., 2005.		01001:orogenic_process
ep4	Metamorphic	geologic	Mineralogical, chemical, and structural adjustment of solid	CGI/GeoSciML.	metamorphic_proces	urn:cgi:classifier:CGl:EventProcess:2
	process	_process	rocks to physical and chemical conditions that differ from		S	01001:metamorphic_process
			the conditions under which the rocks in question			
			originated, and are generally been imposed at depth,			
			below the surface zones of weathering and cementation.			
ep3.1	Accretion	tectonic	The addition of material to a continent. Typically involves	Neuendorf et	accretion	urn:cgi:classifier:CGI:EventProcess:2
		_process	convergent or transform motion.	al., 2005.		01001:accretion
ep3.2	Continental	tectonic	The amalgamation of two continental plates or blocks	CGI/GeoSciML.	continental_collision	urn:cgi:classifier:CGl:EventProcess:2
	collision	_process	along a convergent margin.			01001:continental_collision
ep3.3	Continental	tectonic	Fragmentation of a continental plate into two or more	CGI/GeoSciML.	continental_breakup	urn:cgi:classifier:CGl:EventProcess:2
	breakup	_process	smaller plates; may involve rifting or strike slip faulting.			01001:continental_breakup

Table 4-10: The 1G-E vocabulary for EventProcess (continued).

Table 4-10: The 1G-E vocabulary for EventProcess (continued).

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concepts				
ep3.3.1	Rifting	continental	Extension of the crust to form one or more long, narrow	Neuendorf et	rifting	urn:cgi:classifier:CGI:EventProcess:2
		_breakup	graben of regional extent.	al., 2005.		01001:rifting
ep3.4	Transform	tectonic	A strike-slip fault that links two other faults or two other	Neuendorf et	transform_faulting	urn:cgi:classifier:CGI:EventProcess:2
	faulting	_process	plate boundaries (e.g. two segments of a mid-ocean	al., 2005.		01001:transform_faulting
			ridge). Transform faults often exhibit characteristics that			
			distinguish them from transcurrent faults: (1) for			
			transform faults formed at the same time as the faults			
			they link, slip on the transform fault has equal magnitude			
			at all points along the transform; slip magnitude on the			
			transform fault can exceed the length of the transform			
			fault, and slip does not decrease to zero at the fault			
			termini; (2) for transform faults linking two similar			
			features, e.g. if two mid-ocean ridge segments linked by a			
			transform have equal spreading rates, then the length of			
			the transform does not change as slip accrues on it.			
ep3.5	Subduction	tectonic	The process of one lithospheric plate descending beneath	Neuendorf et	subduction	urn:cgi:classifier:CGI:EventProcess:2
		_process	another.	al., 2005.		01001:subduction
ep3.6	Spreading	tectonic	A process whereby new oceanic crust is formed by	Neuendorf et	spreading	urn:cgi:classifier:CGI:EventProcess:2
		_process	upw elling of magma at the center of mid-ocean ridges and	al., 2005.		01001:spreading
			by a moving-aw ay of the new material from the site of			
			upw elling at rates of one to ten centimeters per year.			
ep3.7	Obduction	tectonic	The overthrusting of continental crust by oceanic crust or	1G-E WP3.	obduction	urn:cgi:classifier:CGI:EventProcess:2
		_process	mantle rocks at a convergent plate boundary.			01001:obduction
ep3.8	Orogenic	tectonic	Mountain building process. Synonym: Orogenesis.	Neuendorf et	orogenic_process	urn:cgi:classifier:CGI:EventProcess:2
	process	_process		al., 2005.		01001:orogenic_process
ep4	Metamorphic	geologic	Mineralogical, chemical, and structural adjustment of solid	CGI/GeoSciML.	metamorphic_proces	urn:cgi:classifier:CGl:EventProcess:2
	process	_process	rocks to physical and chemical conditions that differ from		S	01001:metamorphic_process
			the conditions under which the rocks in question			
			originated, and are generally been imposed at depth,			
			below the surface zones of weathering and cementation.			

 Table 4-10:
 The 1G-E vocabulary for EventProcess (continued).

1G-EID	1G-ETerm	1G-E Broader Concepts	Definition	Source	CGI_URN	Complete URN
ep4.1	Alteration	metamorphic _process	General term for any change in the mineralogical or chemical composition of a rock. Typically related to interaction w ith hydrous fluids.	Fettes & Desmons, 2007.	alteration	urn:cgi:classifier:CGl:EventProcess:2 01001:alteration
ep5	Deformation	geologic _process	Movement of rock bodies by displacement on fault or shear zones, or change in shape of a body of Earth material.	CGI/GeoSciML.	deformation	urn:cgi:classifier:CGl:EventProcess:2 01001:deformation
ep5.1	Fracturing	deformation	The formation of a surface of failure resulting from stress.	CGI/GeoSciML.	fracturing	urn:cgi:classifier:CGl:EventProcess:2 01001:fracturing
ep5.2	Faulting	deformation	The process of fracturing, frictional slip, and displacement accumulation that produces a fault.	al., 2005.	faulting	urn:cgi:classifier:CGl:EventProcess:2 01001:faulting
ep6	Weathering	geologic _process	The process or group of processes by which earth materials exposed to atmospheric agents at or near the Earth's surface are changed in color, texture, composition, firmness, or form, with little or no transport of the loosened or altered material. Processes typically include oxidation, hydration, and leaching of soluble constituents.	CGI/GeoSciML.	weathering	urn:cgi:classifier:CGl:EventProcess:2 01001:w eathering
ep6.1	Frost shattering	physical_w eat hering	Propagation of fractures due to expansion of freezing water in intergranular spaces and fractures in a rock	Neuendorf et al., 2005.	frost_shattering	urn:cgi:classifier:CGl:EventProcess:2 01001:frost_shattering
ер7	Human activity	geologic _process	Processes of human modification of the earth to produce geologic features.	CGI/GeoSciML.	human_activity	urn:cgi:classifier:CGl:EventProcess:2 01001:human_activity
ep8	Bolide impact	geologic _process	The impact of an extraterrestrial body on the surface of the earth.	CGI/GeoSciML.	bolide_impact	urn:cgi:classifier:CGl:EventProcess:2 01001:bolide_impact
ep8.1	Cometary impact	bolide_impact	The impact of a comet on the surface of the earth.	CGI/GeoSciML.	cometary_impact	urn:cgi:classifier:CGl:EventProcess:2 01001:cometary_impact
ep8.2	Meteorite impact	bolide_impact	The impact of a meteorite on the surface of the earth.	CGI/GeoSciML.	meteorite_impact	urn:cgi:classifier:CGl:EventProcess:2 01001:meteorite_impact

4.4 Metamorphic Terms

Due to the complexity of metamorphic rocks, the description of the lithology alone is not always sufficient to characterise the rock uniquely; additional options might be required.

GeoSciML offers packages of descriptive properties to allow a very detailed description of particular aspects of a GeologicUnit, such as bedding, weathering, physical properties and metamorphism. As 1G-E is addressing overview maps at a scale around 1: 1 million most of these are not a part of the 1G-E vocabulary and model. An exception is the GeoSciML MetamorphicDescription package, which has five properties for describing the metamorphism of a GeologicUnit, three of which are available for use in 1G-E: the metamorphic facies, the metamorphic grade and the protolih lithology. The pressure/temperature conditions regarding the metamorphic rocks can be described with the property EventEnvironment (see chapter 4.3.1, 'Earth interior setting'). Use of the MetamorphicDescription package is optional for 1G-E.

4.4.1 Metamorphic Facies

Table 4-11 shows the1G-E vocabulary of MetamorphicFacies for the description of metamorphic rocks. The facies definitions are mainly after Fettes & Desmons (2007) and Smulikowski et al. (2003); to determine the correct URN for the metamorphic rocks one should focus on these definitions. Figure 4-9 gives an example of the encoding of MetamorphicDescription.

4.4.2 Metamorphic Grade

With the property MetamorphicGrade the degree of metamorphism can be recorded. The definitions and URNs of the different metamorphic grades defined for 1G-E are shown in table 4-12. Figure 4-9 gives an example of the encoding of MetamorphicDescription.

4.4.3 Protolith Lithology

In GeoSciML the encoding of ProtolithLithology requires the recording of three properties: the Lithology, the Purpose and the ConsolidationDegree.

The lithology of the protholith of the metamorphic rock should be described in the same way as the lithology of an unmetamorphosed rock. Therefore, the property ProtolithLithology needs to be populated with the same terms and URNs used for the Lithology property of CompositionParts (see section 4.2, tables 4-5, 4-6, 4-7, 4-8).

The purpose property should always be set to 'TypicalNorm'; that of ConsolidationDegree to 'consolidation_not_specified', as shown in figure 4-9.

sml:MetamorphicDes	cription>
<gsml:metamorphicf< td=""><td>acies></td></gsml:metamorphicf<>	acies>
<gsml:cgi_termv< td=""><td>Nue></td></gsml:cgi_termv<>	Nue>
<gsml:value cod<="" td=""><td>eSpace="http://www.cgi-iugs.org/uri">urn:cgi:classifier:CGl:MetamorphicFacies:201001:granulite_facies</td></gsml:value>	eSpace="http://www.cgi-iugs.org/uri">urn:cgi:classifier:CGl:MetamorphicFacies:201001:granulite_facies
<td>alue></td>	alue>
<td>acies></td>	acies>
<gsml:metamorphicg< td=""><td>rade></td></gsml:metamorphicg<>	rade>
<gsml:cgi_termv< td=""><td>Nue></td></gsml:cgi_termv<>	Nue>
<gsml:value coo<="" td=""><td>eSpace="http://www.cgi-iugs.org/uri">urn:cgi:classifier:CGI:MetamorphicGrade:201001:high_metamorphic_grade</td></gsml:value>	eSpace="http://www.cgi-iugs.org/uri">urn:cgi:classifier:CGI:MetamorphicGrade:201001:high_metamorphic_grade
<td>alue></td>	alue>
<td>rade></td>	rade>
<gsml:protolithlitholo< td=""><td>3/></td></gsml:protolithlitholo<>	3/>
<gsml:rockmateria< td=""><td></td></gsml:rockmateria<>	
<gsml:purpose></gsml:purpose>	typicalNorm
<gsml:consolida< td=""><td>tionDegree></td></gsml:consolida<>	tionDegree>
<gsml:cgi_te< td=""><td>rmValue></td></gsml:cgi_te<>	rmValue>
<gsml:valu< td=""><td>e codeSpace="http://www.cgi-iugs.org/uri">urn:cgi:classifier:CGI:ConsolidationDegree:200811:consolidation_not_specified</td></gsml:valu<>	e codeSpace="http://www.cgi-iugs.org/uri">urn:cgi:classifier:CGI:ConsolidationDegree:200811:consolidation_not_specified
<td>ermValue></td>	ermValue>
<td>ationDegree></td>	ationDegree>
<gsml:lithology :<="" td=""><td>tink:href="urn:cgi:classifier:CGI:SimpleLithology:201001:basalt"/></td></gsml:lithology>	tink:href="urn:cgi:classifier:CGI:SimpleLithology:201001:basalt"/>
<td>al></td>	al>
<td>igy></td>	igy>
sml:MetamorphicDes	cription>

Figure 4-9: Example of the encoding of MetamorphicDescription.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
mf0	Metamorphic facies		For use in normative description to indicate that	CGI/GeoSciML.	metamorphic_facies	urn:cgi:classifier:CGI:MetamorphicFacie
	not specified		any metamorphic facies value is valid.		_not_specified	s:201001:metamorphic_facies_not_spe
						cified
mf0.1	Zeolite	metamorphic_facies	Metamorphic facies characterised in rocks of	Smulikow ski et	zeolite_metamorphic	urn:cgi:classifier:CGI:MetamorphicFacie
	metamorphic facies	_not_specified	basaltic composition by zeolite minerals such as	al. 2003; Fettes	_facies	s:201001:zeolite_metamorphic_facies
			laumontite and heulandites (in place of other Ca-AI	and Desmons		
			silicates such as prehnite, pumpellyite and	2007		
			epidote).			
mf0.2	Subgreenschist	metamorphic_facies	Metamorphic facies characterised in rocks of	Smulikow ski et	subgreenschist_met	urn:cgi:classifier:CGl:MetamorphicFacie
	metamorphic facies	_not_specified	basaltic composition by prehnite-pumpellyite,	al. 2003; Fettes	amorphic_facies	s:201001:subgreenschist_metamorphic
			pumpellyite-actinolite, prehnite-actinolite (prehnite	and Desmons		_facies
			and pumpellyite are the diagnostic Ca-AI silicates	2007		
			rather than minerals of the epidote or zeolite			
			groups).			
mf0.3	Greenschist	metamorphic_facies	Metamorphic facies characterised in rocks of	Smulikow ski et		urn:cgi:classifier:CGI:MetamorphicFacie
	metamorphic facies	_not_specified	basaltic composition by actinolite-albite-epidote-	al., 2003; Fettes	orphic_facies	s:201001:greenschist_metamorphic_fac
			chlorite (an epidote group mineral is the diagnostic	& Desmons,		ies
			Ca-AI silicate rather than prehnite or pumpellyite).	2007.		
mf0.4	Epidote amphibolite	metamorphic_facies	Hornblende-albite-epidote(-chlorite); assemblage	Fettes &	epidote_amphibolite	urn:cgi:classifier:CGl:MetamorphicFacie
	metamorphic facies	_not_specified	for rocks of basaltic composition.	Desmons, 2007.	_metamorphic_facie	s:201001:epidote_amphibolite_metamor
					s	phic_facies
mf0.5	Amphibolite	metamorphic_facies	Metamorphic facies characterised in rocks of	Smulikow ski et	amphibolite_metamo	urn:cgi:classifier:CGI:MetamorphicFacie
	metamorphic facies	_not_specified	basaltic composition by hornblende-plagioclase	al., 2003; Fettes	rphic_facies	s:201001:amphibolite_metamorphic_faci
			(plagioclase more calcic than An17).	& Desmons,		es
				2007.		
	Durau ana harrafala	matanan his fasias	Materrowskie fooige allowedavia all in weake of	Smulikow ski et	nunauana hamfala	
mf0.6	Pyroxene hornfels	metamorphic_facies	Metamorphic facies characterised in rocks of			urn:cgi:classifier:CGI:MetamorphicFacie
	metamorphic facies	_not_specified	basaltic composition by clinopyroxene-	al., 2003; Fettes		s:201001:pyroxene_hornfels_metamorp
			orthopyroxene-plagioclase (olivine stable with	& Desmons,		hic_facies
			plagioclase).	2007.		

Table 4-11: The 1G-E vocabulary for MetamorphicFacies.

Table 4-11: The 1G-E vocabulary for MetamorphicFacies (continued).

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concept				
mf0	Metamorphic facies not specified		For use in normative description to indicate that any metamorphic facies value is valid.	CGI/GeoSciML.	metamorphic_facies _not_specified	urn:cgi:classifier:CGl:MetamorphicFacie s:201001:metamorphic_facies_not_spe cified
mf0.1	Zeolite metamorphic facies	metamorphic_facies _not_specified	Metamorphic facies characterised in rocks of basaltic composition by zeolite minerals such as laumontite and heulandites (in place of other Ca-AI silicates such as prehnite, pumpellyite and epidote).	Smulikow ski et al. 2003; Fettes and Desmons 2007	zeolite_metamorphic _facies	urn:cgi:classifier:CGl:MetamorphicFacie s:201001:zeolite_metamorphic_facies
mf0.2	Subgreenschist metamorphic facies	metamorphic_facies _not_specified	Metamorphic facies characterised in rocks of basaltic composition by prehnite-pumpellyite, pumpellyite-actinolite, prehnite-actinolite (prehnite and pumpellyite are the diagnostic Ca-AI silicates rather than minerals of the epidote or zeolite groups).	Smulikow ski et al. 2003; Fettes and Desmons 2007	subgreenschist_met amorphic_facies	urn:cgi:classifier:CGl:MetamorphicFacie s:201001:subgreenschist_metamorphic _facies
mf0.3	Greenschist metamorphic facies	metamorphic_facies _not_specified	Metamorphic facies characterised in rocks of basaltic composition by actinolite-albite-epidote- chlorite (an epidote group mineral is the diagnostic Ca-AI silicate rather than prehnite or pumpellyite).	Smulikow ski et al., 2003; Fettes & Desmons, 2007.	greenschist_metam orphic_facies	urn:cgi:classifier:CGl:MetamorphicFacie s:201001:greenschist_metamorphic_fac ies
mf0.4	Epidote amphibolite metamorphic facies	metamorphic_facies _not_specified	Hornblende-albite-epidote(-chlorite); assemblage for rocks of basaltic composition.	Fettes & Desmons, 2007.	epidote_amphibolite _metamorphic_facie s	urn:cgi:classifier:CGI:MetamorphicFacie s:201001:epidote_amphibolite_metamor phic_facies
mf0.5	Amphibolite metamorphic facies	metamorphic_facies _not_specified	Metamorphic facies characterised in rocks of basaltic composition by hornblende-plagioclase (plagioclase more calcic than An17).	Smulikow ski et al., 2003; Fettes & Desmons, 2007.		urn:cgi:classifier:CGl:MetamorphicFacie s:201001:amphibolite_metamorphic_faci es
mf0.6	Pyroxene hornfels metamorphic facies	metamorphic_facies _not_specified	Metamorphic facies characterised in rocks of basaltic composition by clinopyroxene- orthopyroxene-plagioclase (olivine stable w ith plagioclase).	Smulikow ski et al., 2003; Fettes & Desmons, 2007.		urn:cgi:classifier:CGl:MetamorphicFacie s:201001:pyroxene_hornfels_metamorp hic_facies

1G-EID	1G-ETerm	1G-E Broader Concepts	Definition	Source	CGI_URN	Complete URN
mg0	Metamorphose d grade not specified		Rock is metamorphosed, may have any value for metamorphic grade.	CGI/GeoSciML.	metamorphosed_grad e_not_specified	urn:cgi:classifier:CGl:Metamorphic Grade:201001:metamorphosed_gr ade_not_specified
mg0.1	Very low metamorphic grade	metamorphose d_grade_not_s pecified	Rock very slightly metamorphosed, protolith structure ubiquitous; mineral assemblage of zeolite facies, subgreenschist facies, or low temperature part of blueschist facies. Mineral assemblages according to Fry (1984; table 10-1): ultramafic-serpentine (quartz, magnesite); mafic-clay, chlorite, relict igneous minerals; calc-aluminous basic-zeolite, pumpellite, epidote, albite; pelite, semi-pelite clays, chlorite, sericite, quartz.	CGI/GeoSciML.	very_low _metamorph ic_grade	urn:cgi:classifier:CGI:Metamorphic Grade:201001:very_low _metamor phic_grade
mg0.2	Low metamorphic grade	metamorphose d_grade_not_s pecified	Metamorphic effects clearly visible, protolith structures typically still observable, includes rocks metamorphosed in greenschist, high-temperature blueschist, very low temperature eclogite facies. Mineral assemblages according to Fry (1984; table 10-1): ultramafic-serpentine (talc, magnesite); mafic-chlorite, actinolite (garnet); calc- aluminous basic-albite, epidote; pelite, semi-pelite w hite mica, chlorite, quartz, biotite (garnet, Al-minerals).	Smulikow ski et al., 2003; Fry, 1984.	low_metamorphic_gr ade	urn:cgi:classifier:CGl:Metamorphic Grade:201001:low _metamorphic_ grade
mg0.3	Medium metamorphic grade	metamorphose d_grade_not_s pecified	Protolith structure typically obliterated. Includes rocks metamorphosed in high-temperature epidote-amphibolite, low -temperature amphibolite, and low temperature eclogite facies. Mineral assemblages according to Fry (1984; table 10-1): ultramafic-olivine, talc (magnesite, anthophyllite); mafic-hornblende, (diopside, garnet); calc- aluminous basic-plagioclase; pelite, semi-pelite w hite mica, biotite, quartz (garnet, Al-minerals).	Smulikow ski et al., 2003; Fry, 1984.	medium_metamorphic _grade	urn:cgi:classifier:CGl:Metamorphic Grade:201001:medium_metamorph ic_grade

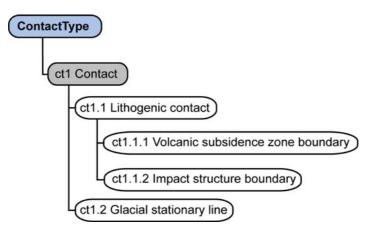
Table 4-12: The 1G-E vocabulary for MetamorphicGrade.

1G-EID	1G-ETerm		Definition	Source	CGI_URN	Complete URN
		Concepts				
mg0.4	High	metamorphose	Protolith structures almost alw ays obliterated, evidence of			urn:cgi:classifier:CGl:Metamorphic
	metamorphic	d_grade_not_s		al., 2003; Fry,	ade	Grade:201001:high_metamorphic_
	grade	pecified	high-temperature amphibolite, pyroxene hornfels, and	1984.		grade
			medium to high-temperature eclogite facies. Mineral			
			assemblages according to Fry (1984) Table 10-1:			
			ultramafic-olivine, anthophyllite, cummingtonite, enstatite;			
			mafic-hornblende, (diopside, garnet); calc-aluminous			
			basic-plagioclase; pelite, semi-pelite K-feldspar, biotite,			
			quartz, Al-minerals (garnet), migmatite.			
mg0.5	Very high	metamorphose	Protolith structures almost alw ays obliterated. Includes	Smulikow ski et	very_high_metamorp	urn:cgi:classifier:CGl:Metamorphic
	metamorphic	d_grade_not_s	rocks metamorphosed in granulite (or sanidinite), and high-	al., 2003; Fry,	hic_grade	Grade:201001:very_high_metamor
	grade	pecified	temperature eclogite facies. Mineral assemblages	1984.		phic_grade
			according to Fry (1984; table 10-1): ultramafic-olivine,			
			enstatite; mafic-hypersthene, diopside (hornblende); calc-			
			aluminous basic-plagioclase; pelite, semi-pelite			
			hypersthene + Al-minerals (K-feldspar, quartz), or			
			sapphirine.			

Table 4-12: The 1G-E vocabulary for MetamorphicGrade (continued).

4.5 Contacts and Structures

In 1G-E the only types of structure that are being used are Faults and Contacts. Both the property ContactType and FaultType belong to the GeoSciML FeatureType GeologicStructures. The mandatory definitions (e.g. ID, Name, ObservationMethod etc.) for the encoding of GeologicStructures are given in section 3.2.2. In the following the encoding of the properties ContactType and FaultType is illustrated.


4.5.1 ContactType

For 1G-E the property ContactType is only being used to describe Calderas, Impact craters and Glacial stationary lines. The map features for Impact craters and calderas should not be defined as polygons, but as linear features deliminating the geological structures. The material within these structures should be described as a normal geological unit (using the FeatureTypes GeologicUnit and CompositionPart).

Table 4-13 shows the vocabulary used to populate the ContactType property; figure 4-10 shows an encoding example and figure 4-11 illustrates the corresponding hierarchy.

Figure 4-10: Example of the encoding of ContactType.

1G-E ID	1G-ETerm	1G-E Broader Concepts	Definition	Source	CGI_URN	Complete URN
		concepts				
ct1	Contact		A surface that separates geologic units [adapted from page 137 of Jackson, 1997]. Very general concept representing any kind of surface separating two geologic units, including primary boundaries such as depositional contacts, all kinds of unconformities, intrusive contacts, and gradational contacts, as well as faults that separate geologic units. Note that usage of geologic unit here is per NADM C1 2004, denoting a body of material. Lines on geologic maps may also delineate featured defined geomorphically craters, terraces, shorelines, scarps that are not inherently geologic unit boundaries in this sense.	CGI/GeoSciML.	contact	urn:cgi:classifier:CGl:Contac Type:201001:contact
ct1.1	Lithogenetic contact	contact	A non-faulted contact separating bodies of material in the earth that have different lithologic character or geologic history.	CGI/GeoSciML.	lithogenetic_contact	urn:cgi:classifier:CGI:Contact Type:201001:lithogenetic_co ntact
ct1.1.1	Volcanic subsidence zone boundary	lithogenetic _contact	Boundary around a body of rock that is within a zone of subsidence or cratering produced by volcanic activity. See also: caldera, cauldron, crater.	CGI/GeoSciML.	volcanic_subsidence_ zone_boundary	urn:cgi:classifier:CGl:Contact Type:201001:volcanic_subsi dence_zone_boundary
ct1.1.2	Impact structure boundary	lithogenetic _contact	Surface that bounds a body of rock affected by an extraterrestrial impact event.	CGI/GeoSciML.	impact_structure_bou ndary	urn:cgi:classifier:CGl:Contact Type:201001:impact_structu re_boundary
ct1.2	Glacial stationary line	contact	A boundary betw een a subglacial geomorphic unit and a periglacial geomorphic unit, marking the maximum extent of glacial cover. This can be thought of as the outcrop of the contact betw een a glacier and its substrate at some time at each point along the boundary. This contact type is included as an interim concept, assuming that in the future, there w ill be extensions to account better for geomorphic units and line types.*	CGI/GeoSciML.	glacial_stationary_line	urn:cgi:classifier:CGI:Contact Type:201001:glacial_stationa ry_line

Table 4-13: The 1G-E vocabulary for ContactType.

A Glacial stationary line is an inferred limit of a glacier at its maximum (or some stable) extent; it marks a contact boundary of the ice and thus is an instance of this contact type, with metadata indicating observation method by inference.

4.5.2 FaultType

In GeoSciML the property FaultType belongs to the package ShearDisplacementStructure, which in turn belongs to the FeatureType GeologicStructure. The FaultType property must be populated with the URN of one of the concepts described in table 4-14 and figure 4-12.

FaultType
ft Fault
ft1 Strike-slip fault
ft1.1 Dextral strike slip fault
ft1.2 Sinistral strike slip fault
- ft2 Reverse fault
ft2.1 Thrust fault
ft2.2 High angle reverse fault
ft3 Normal fault
ft3.1 Low-angle normal fault
ft3.2 Detachment fault
ft3.3 High-angle normal fault
ft4 Oblique slip fault

Figure 4-12: Hierarchical overview representation of the 1G-E vocabulary for FaultType.

1G-EID	1G-ETerm	1G-E Broader	Definition	Source	CGI_URN	Complete URN
		Concepts				
ft	Fault		A discrete ourfage, or zone of discrete ourfages, with	CGI/GeoSciML.	fault	
π	Fault		A discrete surface, or zone of discrete surfaces, with	CGI/GeoSciiviL.	Tault	urn:cgi:classifier:CGl:FaultType:2010 01:fault
			some thickness, separating two rock masses across			U I.Tault
			w hich one mass has slid past the other and			
514	Otallas alla facilit	6 14	characterized by brittle deformation.		a full as a line of a sulf	
ft1	Strike slip fault	rauit	Fault with a strike-parallel displacement component of a	CGI/GeoSciML.	strike_slip_fault	urn:cgi:classifier:CGI:FaultType:2010
			slip vector more than 10 times the dip-parallel component			01:strike_slip_fault
			of the slip vector at at least one location along the mapped			
.			trace of the fault.			
ft1.1	Dextral strike	strike_slip_faul	Fault with a right-lateral strike-parallel displacement	CGI/GeoSciML.		urn:cgi:classifier:CGI:FaultType:2010
	slip fault	t	component of a slip vector more than 10 times the dip-		ult	01:dextral_strike_slip_fault
			parallel component of the slip vector at at least one			
			location along the fault, and a right-lateral displacement			
			over more than half the mapped trace of the fault.			
ft1.2	Sinistral strike	strike_slip_faul	Fault with a left-lateral strike-parallel displacement	CGI/GeoSciML.	sinistral_strike_slip_f	urn:cgi:classifier:CGI:FaultType:2010
	slip fault	t	component of a slip vector more than 10 times the dip-		ault	01:sinistral_strike_slip_fault
			parallel component of the slip vector at at least one			
			location along the fault, and a left-lateral displacement			
			over more than half the mapped trace of the fault.			
ft2	Reverse fault	fault	Fault with a dip-parallel displacement component of a slip	CGI/GeoSciML.	reverse_fault	urn:cgi:classifier:CGI:FaultType:2010
			vector more than 10 times the strike-parallel component of			01:reverse_fault
			the slip vector at at least one location along the mapped			
			trace of the fault, and the fault dips consistently in the			
			same direction with the hanging wall displaced up relative			
			to the footw all over at least half the mapped trace of the			
			fault.			
ft2.1	Thrust fault	reverse_fault	Fault that dips less than 45 degrees over more than half	CGI/GeoSciML.	thrust_fault	urn:cgi:classifier:CGI:FaultType:2010
			of the recognised extent of the fault, with a hanging wall			01:thrust_fault
			displaced from a structurally deeper position relative to			
			footwall rocks.			<u> </u>
ft2.2	High angle	reverse_fault	Reverse fault that dips at least 45 degrees over more	CGI/GeoSciML.	high_angle_reverse	urn:cgi:classifier:CGI:FaultType:2010
	reverse		than half of its recognised extent, for which slip or			01:high_angle_reverse
			separation is not explicitly specified.			

Table 4-14: The 1G-E vocabulary for FaultType.

 Table 4-14:
 The 1G-E vocabulary for FaultType (continued).

1G-EID	1G-ETerm	1G-E Broader Concepts	Definition	Source	CGI_URN	Complete URN
ft3	Normal fault	fault	Fault w ith a dip-parallel displacement component of a slip vector more than 10 times the strike-parallel component of the slip vector over more than half recognized extent of the fault, and the fault dips consistently in the same direction, and for w hich the hanging w all has been displaced dow n relative to the footw all.	CGI/GeoSciML.	normal_fault	urn:cgi:classifier:CGl:FaultType:2010 01:normal_fault
ft3.1	Low -angle normal fault	normal_fault	Fault that dips less than 45 degrees over more than half of the recognised extent of the fault with the hanging wall displaced from a structurally higher position relative to footw all rocks.	CGI/GeoSciML.		urn:cgi:classifier:CGl:FaultType:2010 01:low_angle_normal_fault
ft3.1.1	Detachment fault	low_angle _normal_fault	A regional-scale, large displacement, low -angle normal fault.	CGI/GeoSciML.	detachment_fault	urn:cgi:classifier:CGl:FaultType:2010 01:detachment_fault
ft3.2	High-angle normal fault	normal_fault	Fault that dips at least 45 degrees over more than half of the recognised extent of the fault with the hanging wall displaced from a structurally higher position relative to footw all rocks.	CGI/GeoSciML.	high_angle_normal_f ault	urn:cgi:classifier:CGl:FaultType:2010 01:high_angle_normal_fault
ft4	Oblique slip fault	fault	Fault with a slip vector that has a ratio of a strike-parallel to dip-parallel displacement betw een 10 to 1 and 1 to 10 at at least one location along the mapped trace of the fault.	CGI/GeoSciML.	oblique_slip_fault	urn:cgi:classifier:CGl:FaultType:2010 01:oblique_slip_fault

4.6 Complex Rocks

Geological processes often produce complex rock sequences of heterogeneous geological units comprising diverse lithologies of different genesis and age. As such products of a complicated geological history are difficult to describe, geoscientists have defined terms that are neither purely lithological, nor genetic or age-related, and therefore cannot be described in the properties/categories of this Data Specification.

For 1G-E such GeologicUnits are described as 'composite terms' and guidelines on how to describe them in GeoSciML are provided here.

4.6.1 Flysch and Molasse

Flysch consists of repeated sedimentary cycles with upwards fining sediments. For example, coarse conglomerates or breccias might occur at the bottom of each cycle, grading upwards into sandstone and shale or claystone. Flysch is formed under deep marine circumstances, in a quiet and low-energy depositional environment.

Molasse is similar to Flysch, but has more clastic lithologies (sandstone, conglomerate, shale and marls) and a more-paralic, less-rythmic facies (partly marine, partly continental or deltaic).

For each lithology present in the Flysch or Molasse sequence, one CompositionPart (see section 4.2) has to be encoded.

The CompositionPart role property (GeologicUnitPartRole, see section 4.2) for all CompositionParts should be set to 'cyclic_bedding_package'.

The EventEnvironment property of GeologicEvent (see section 3.4.1) should be set to one of the marine setting environments listed in table 4-9. For Flysch this could be e.g. 'bathyal'; for Molasse it could be either 'epicontinental_marine_setting', 'piedmont_slope_system_setting' or 'deltaic_system_setting'.

4.6.2 Olistostrome

An Olistostrome is defined as a debris-flow deposit consisting of a chaotic mass of intimately mixed heterogeneous materials (such as blocks and muds) that accumulated by submarine gravity sliding or slumping of unconsolidated sediments. It can best be described as a diamictite of the 1G-E Lithology vocabulary (tables 4-5, 4-6, 4-7, 4-8); the CompositionPart lithology property should therefore be set to 'diamictite'.

The EventProcess property of GeologicEvent (see section 4.4.2) ought to be set to 'debris_flow', the EventEnvironment property of GeologicEvent (see section 4.4.2) to 'subaqueous setting'.

4.6.3 Turbidite

The characteristic feature of Turbidites is that they are deposited by turbidity currents in an ocean environment, which can result in a consolidated or unconsolidated rock normally with a graded bedding and moderate sorting.

Like in the description of Flysch and Molasse, every lithology occurring within the Turbidite has to be encoded as one CompositionPart. The property GeologicUnitPartRole should be set to 'cyclic_bedding_package' for all CompositionParts. The EventProcess property ought to be set to 'turbidity_current_deposition', the EventEnvironment property to one of the marine setting environments listed in table 4-9, e.g. 'bathyal'.

4.6.4 Ophiolitic mélange

An Ophiolitic mélange can like the Olistostrome best be described as a diamictite. Characteristic of this kind of diamictite are ophiolitic rock fragments such as serpentinite and/or peridotite in a pelitic to psammitic groundmass.

Each lithology occurring in the mélange needs to be described as one CompositionPart. The role of each groundmass CompositionPart (GeologicUnitPartRole) has to be defined as 'geologic_unit_matrix'; that of the rock fragment CompositionParts as 'blocks'.

4.6.5 Tectonic mélange

A Tectonic mélange is similar to an ophiolitic one, but the rock fragments are ordinarily not ophiolitic, and the whole sequence is commonly metamorphosed.

Each lithology occurring in the mélange needs to be decribed as one CompositionPart. The GeologicUnitRolePart should be set to 'blocks'. The EventProcess property (table 4-10) ought to be set to 'tectonic_process'; the EventEnvironment property(table 4-9) should be set to either 'low_pressure_high_temperature_setting', or 'high_pressure_low_temperature_earth_interior_setting', or 'ultra high_pressure_low_temperature_crustal_setting'.

The metamorphism can be described with one term of the MetamorphicFacies property (see section 4.5.1, table 4-11), e.g. 'greenshist_metamorphic_facies' and one term of the MetamorphicGrade property (see section 3.5.2, table 4-12), e.g. 'low_metamorphic_grade'.

4.6.6 Ophiolite complex

An Ophiolite complex is an assemblage of distinct lithologies formed by particular tectonic processes. In GeoSciML it can be built up as a set of CompositionParts, one for each of the lithologies along with an appropriate GeologicUnitPartRole like e.g. 'layer_lithosome'. For the EventProcess property the term 'tectonic_process' and for the EventEnvironment the term 'tectonic_setting' should be chosen.

To describe the metamorphism the properties MetamorphicFacies and MetamorphicGrade (see section 4.5) ought to be used.

4.7 Orogenic Events

Where a GeologicUnit were formed or affected by orogenic processes, this can be described as follows:

if it was formed by an orogeny, the PreferredAge of GeologicEvents should be used; if it was only affected (e.g. folded or metamorphosed) by the orogeny, GeologicHistory of GeologicEvents should be chosen (the property PreferredAge will then be used to describe the original formation of the rock).

The name of the orogeny can be assigned within the Name property of GeologicEvents (for both PreferredAge and GeologicHistory) by using one of the terms given in table 4-15. The corresponding concept hierarchy is shown in figure 4-13. These definitions are Europe specific and will not form a part of the global CGI vocabulary. For GeologicHistory there might be several GeologicEvents referencing the same orogenic events, for example different periods of folding that occurred within the orogeny.

The description of the orogenic events in table 4-15 includes an age range and the EventAge should be consistent with this. The age range given in EventAge can be the same as the orogenic event, or it can be contained within it, indicating that the GeologicUnit was formed or affected during part of the orogenic event.

In addition to the name and age of the orogenic event the recording of an EventProcess, which should be consistent with the formation or modification of the GeologicUnit, is required. This could include for example a tectonic or metamorphic process (table 4-10, section 4.3.2). The definition of an EventEnviroment is optional; if used, it should be populated with a URN from table 4-9 (see section 4.3.1).

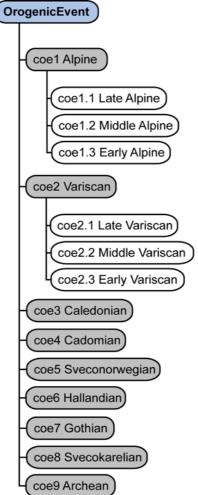


Figure 4-13: Hierarchical overview representation of the 1G-E vocabulary for OrogenicEvents.

1G-EID	1G-E Term	1G-E	Definition	Source	CGI_URN	Proposed Complete URN
		Broader				
		Concept				
coe.1	Alpine		Youngest Orogeny w hich took place betw een 221 Ma		alpine	urn:cgi:classifier:CGI:Orogenic
			(Upper Triassic) and 0,01 Ma (Pleistocene/Holocene). Alpine	HSÜ, 1982.		Event:2009:alpine
			subdivisions: Late Alpine, Middle Alpine and Early Alpine.			
coe.1.1	Late Alpine	Alpine	Youngest subdivision of Alpine Orogeny took place betw een	Van Eysinga,	late_alpine	urn:cgi:classifier:CGI:Orogenic
			19 Ma and 0.01 Ma (Burdigalien to Pleistocene/Holocene).	1975.		Event:2009:late_alpine
coe.1.2	Middle Alpine	Alpine	Intermediate subdivision of Alpine Orogeny took place	Van Eysinga,	middle_alpine	urn:cgi:classifier:CGl:Orogenic
			betw een 63 Ma and 19 Ma (Danian to Burdigalien).	1975.		Event:2009:middle_alpine
coe.1.3	Early Alpine	Alpine	Oldest subdivision of Alpine Orogeny took place betw een	Van Eysinga,	early_alpine	urn:cgi:classifier:CGl:Orogenic
			221 Ma and 63 Ma (Carnian to Danian).	1975.		Event:2009:early_alpine
coe.2	Variscan		Variscan/Moldanubician Orogeny took place betw een	GSSR/SGUDS ¹ ;	variscan	urn:cgi:classifier:CGl:Orogenic
			(480??) 373 ±5 Ma and 262 ±2 Ma ((Tremadocian)	Matte, 2001;		Event:2009:variscan
			Famennian to Capitanian). *	Linnemann, 2003.		
coe.2.1	Late Variscan	Variscan	Youngest subdivision of the Variscan/Moldanubician	GSSR/SGUDS ¹ .	late_variscan	urn:cgi:classifier:CGI:Orogenic
			Orogeny took place betw een 320 Ma and 290 Ma			Event:2009:late_variscan
			(Serpukhovian to Sakmarian).			
coe.2.2	Middle Variscan	Variscan	Intermediate subdivision of the Variscan/Moldanubician	GSSR/SGUDS ¹ .	middle_variscan	urn:cgi:classifier:CGI:Orogenic
			Orogeny took place betw een 360 Ma and 330 Ma (Famennian to Visean).			Event:2009:middle_variscan
coe.2.3	Early Variscan	Variscan	Oldest subdivision of the Variscan/Moldanubician Orogeny	GSSR/SGUDS ¹ .	early_variscan	urn:cgi:classifier:CGl:Orogenic
			took place betw een 373 \pm 5 Ma and 360 Ma (Famennian).			Event:2009:early_variscan
coe.3	Caledonian		Caledonian Orogeny took place betw een 490 Ma and 383 ±	McKerrow et al.,	caledonian	urn:cgi:classifier:CGl:Orogenic
			3 Ma (Furongian Stage 10 to Frasnian).	2002; Plašienka et al., 1997.		Event:2009:caledonian

Table 4-15: The 1G-E vocabulary for OrogenicEvents.

* Matte (2001) extends Variscan orogeny to include the Caledonian orogeny.

Table 4-15: The 1G-E vocabulary for OrogenicEvents (continued).

1G-E Term	1G-E	Definition	Source	CGI_URN	Proposed Complete URN
	Broader				
	Concept				
coe.4 Cadomian		Cadomian Orogeny took place betw een 752 ±8 Ma and 502	Putiš, et al., in	cadomian	urn:cgi:classifier:CGl:Orogenic
		±3 Ma (Cryogenian to Guzhangian).	press.		Event:2009:cadomian
coe.5 Sveconorw egian		Sveconorw egian Orogeny took place betw een 1140 Ma and	Bingen et al.,	sveconorw egian	urn:cgi:classifier:CGl:Orogenic
		920 Ma (Stanian 1 to Tonian 1).	2008; Koistinen et		Event:2009:sveconorw egian
			al., 2001.		
coe.6 Hallandian		Hallandian Orogeny took place betw een 1470 Ma and 1420	Bingen et al.,	hallandian	urn:cgi:classifier:CGl:Orogenic
		Ma (Calymmian 3 to Calymmian 4).	2008; Koistinen et		Event:2009:hallandian
			al., 2001.		
coe.7 Gothian		Gothian Orogeny took place betw een 1700 Ma and 1520 Ma	Bingen et al.,	gothian	urn:cgi:classifier:CGI:Orogenic
		(Statherian 3 to Calymmian 1).	2008; Koistinen et		Event:2009:gothian
			al., 2001.		
coe.8 Svecokarelian		Svecokarelian Orogeny took place between 1900 Ma 1750	Koistinen et al.,	svecokarelian	urn:cgi:classifier:CGI:Orogenic
		Ma (Orosirian 1 to Statherian 2).	2001.		Event:2009:svecokarelian
coe.9 Archean		Archean Orogeny took place betw een 2850 and 2600 Ma	Koistinen et al.,	archean	urn:cgi:classifier:CGl:Orogenic
		(Mesoarchean to Neoarchean).	2001.		Event:2009:archean
	Cadomian Sveconorwegian Hallandian Gothian Svecokarelian	Broader ConceptCadomianSveconorw egianHallandianGothianSvecokarelian	Broader ConceptCadomian Orogeny took place betw een 752 ±8 Ma and 502 ±3 Ma (Cryogenian to Guzhangian).Sveconorw egianSveconorw egian Orogeny took place betw een 1140 Ma and 920 Ma (Stanian 1 to Tonian 1).HallandianHallandian Orogeny took place betw een 1470 Ma and 1420 Ma (Calymmian 3 to Calymmian 4).GothianGothian Orogeny took place betw een 1700 Ma and 1520 Ma (Statherian 3 to Calymmian 1).SvecokarelianSvecokarelian Orogeny took place betw een 1900 Ma 1750 Ma (Orosirian 1 to Statherian 2).ArcheanArchean Orogeny took place betw een 2850 and 2600 Ma	Broader ConceptCadomian Orogeny took place betw een 752 ±8 Ma and 502 ±3 Ma (Cryogenian to Guzhangian).Putiš, et al., in press.Sveconorw egianSveconorw egian Orogeny took place betw een 1140 Ma and 920 Ma (Stanian 1 to Tonian 1).Bingen et al., 2008; Koistinen et al., 2001.HallandianHallandian Orogeny took place betw een 1470 Ma and 1420 Ma (Calymmian 3 to Calymmian 4).Bingen et al., 2008; Koistinen et al., 2001.GothianGothian Orogeny took place betw een 1700 Ma and 1520 Ma (Statherian 3 to Calymmian 1).Bingen et al., 2008; Koistinen et al., 2001.SvecokarelianSvecokarelian Orogeny took place betw een 1900 Ma 1750 Ma (Orosirian 1 to Statherian 2).Koistinen et al., 2001.ArcheanArchean Orogeny took place betw een 2850 and 2600 MaKoistinen et al., 2001.	Broader ConceptBroader ConceptCadomian Orogeny took place betw een 752 ±8 Ma and 502 ±3 Ma (Cryogenian to Guzhangian).Putiš, et al., in press.CadomianSveconorw egianSveconorw egian Orogeny took place betw een 1140 Ma and 920 Ma (Stanian 1 to Tonian 1).Bingen et al., 2008; Koistinen et al., 2001.Sveconorw egian Orogeny took place betw een 1470 Ma and 1420 Ma (Calymmian 3 to Calymmian 4).Bingen et al., 2008; Koistinen et al., 2001.Sveconorw egian orogeny took place betw een 1470 Ma and 1420 2008; Koistinen et al., 2001.Bingen et al., 2008; Koistinen et al., 2001.HallandianGothianGothian Orogeny took place betw een 1700 Ma and 1520 Ma (Statherian 3 to Calymmian 1).Bingen et al., 2008; Koistinen et al., 2001.gothianSvecokarelianSvecokarelian Orogeny took place betw een 1900 Ma 1750 Ma (Orosirian 1 to Statherian 2).Bingen et al., 2008; Koistinen et al., 2001.svecokarelian 2008; Koistinen et al., 2001.ArcheanArchean Orogeny took place betw een 2850 and 2600 MaKoistinen et al., 2001.archean

5. Topographic Base: EuroGlobalMap

The topographic base for 1G-E is the 1:1 million EuroGlobalMap (EGM) by EuroGeographics.

The offer to use this topographic base was made by the Chief Executive of EuroGeographics (also managing a current eContentplus project – ESDIN) at the 1G-E Kick-off meeting in Rome. The offer was accepted by the Consortium and confirmed by the Operational Magnagement Group (OMG).

The EGM is a seamless and harmonised digital topographical dataset that covers Europe at the scale of 1:1 million and is regarded as the most appropriate base. It is produced in cooperation with the National Mapping and Cadastral Agencies of Europe, using official National Databases and contains 6 themes including administrative boundaries, hydrography, transport, settlement, elevation and named locations (i.e. geographical names). The harmonisation was synchronized with DIGEST standard and the metadata were designed according to the standard ISO 19115.

The EGM version 2.1 is available in ESRI v9.1 GeoDatabase as an ArcGIS 9.1 personal geodatabase, as shapefile format, and as MapInfo MID/MIF file format. It can be delivered as a 'Full Europe' version in addition to the standard country-by-country version. The map covers the following countries: Austria; Belgium; Luxembourg; Croatia; Czech Republic; Cyprus; Denmark including Greenland and the Faroe Islands; Estonia; Finland; France including Monaco; Germany; Great Britain; Greece; Hungary; Iceland; Ireland; Italy including San Marino and The Vatican City; Latvia; Lithuania; Malta; Moldova; Northern Ireland; Norway; Poland; Portugal; Romania; Slovakia; Slovenia; Spain and Andorra; Sweden; Switzerland and Liechtenstein; The Netherlands; and Ukraine.

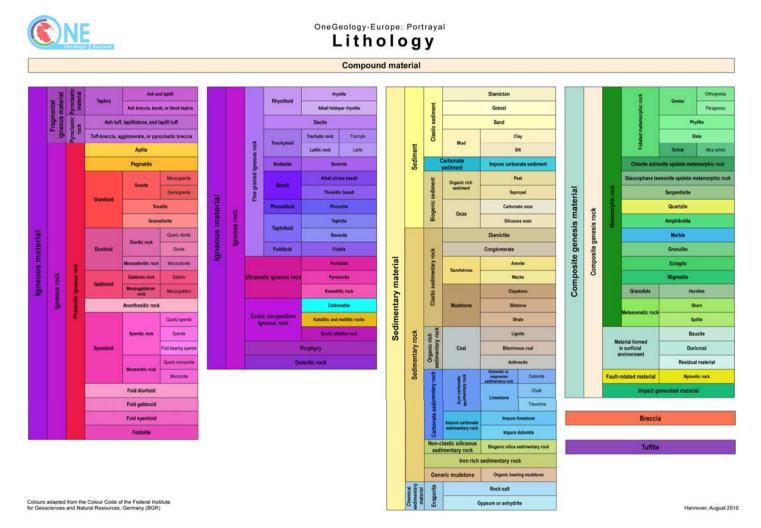
The coordinate system is based on the ETRS89 spatial reference system, which corresponds to WGS84. The geographical coordinates are given in degrees (longitude, latitude) with alphanumerical fraction 9 significant digits. This corresponds to an accuracy of around 5 cm.

An overview over the properties of the EGM is given in table 5-1.

Property	EGM version 2.1		
Database structure	ArcGIS Geodatabase v9.1		
Database specifications	Version 3.1		
Specs harmonisation with ERM	Done		
Topology	Defined in specifications		
Platform dependency	Specifications platform independent		
Coordinate accuracy	9 digits, 5 cm		
Formats for customers	ESRI Geodatabase, ESRI shapefile,		
	MapInfo MID/MIF		
Data area	32 countries		

Table 5-1: Overview over the properties of the EuroGlobalMap (EGM).

The agreement for the use of the EuroGlobalMap by 1G-E was formalised in February 2009 by EuroGeographics. 1G-E uses the dataset under an evaluation license for the length of the project. The EuroGlobalMap is used within the 1G-E project GeoPortal. The data is served either via ftp or possibly WMS.



6. Portrayal

The way rock units are portrayed on maps is an important factor in facilitating the understanding of geological data and can be used to highlight, for example, the different lithologies or ages. For the expert user it is important to be able to recognise familiar patterns and schemes, so that relevant information can be drawn from the spatial data base immediately.

A portrayal scheme for lithology, age and contacts and faults was developed for 1G-E with special attention paid to the particularities of the different European countries. Compromises were made by all participants in order to create a uniform scheme, shown in figures 6-1 and 6-2 and table 6-1 and 6-2. This portrayal, together with the vocabulary presented in this document, is the foundation for the semantic and geometric harmonisation of the 1G-E European geological data base.

Figure 6-1: The 1G-E portrayal for the lithology.

02.09.2010 Version 2.0

OneGeology-Europe: Portrayal Age Holocene Holocene Tithonian Famennian Ediacaran Ediacaran Late/Upper Late/Upper Pleistocene Late/Upper Kimmeridgian Frasnian Cryogenian Cryogenian ≧ Ionian Oxfordian Givetian Tonian 2* Pleistocene Middle Tonian n Calabrian Callovian Eifelian Tonian 1* Gelasian Bathonian Emsian Stenian 2* Middle Stenian Early/Lower Stenian 1* Piacenzian Raiocian Pragian Pliocene Aslenian Lochkovian Ectasian 4* Zanclean Messinian Toarcian Pridoli Pridoli Ectasian 3* Ectasian Tortonian Pliensbachian Ludfordian Ectasian 2* Early/Lower Ludlow Gorstian Sinemutian Ectasian 1* Serravalian Me Miocene Cenozoic Langhian Hettangian Homerian Calymmian 4* Wenlock Burdigalian Rhaetian Sheinwoodian Calymmian 3* Calymmian Aguitarian Late/Upper Norian Telychian Calymmian 2* Chatian Carnian Llandovery Aeronian Calvmmian 1* Oligocene Phanerozoic Ripelar Ladinian Rhuddanian Statherian 4 * Middle Paleozoic Priabonian Anisian Himantian Statherian 3* Phanerozoic Phanerozoic Statherian Late/Upper Katian Statherian 2* Bartonian Oleneklan Eocene Early/Lower Induan Statherian 1* Lutetan Santhian - led Ypresian Changhsingian Darriwilian Orosirian 7* Lopingian Middle Dapingian Orosirian 6 * Thanetian Wuchiapingian Paleocene Orosirian 5* Floian Selandian Capitanian Early/Lower Danian Guadalupian Wordian Tremadocian Orosirian Orosirian 4* Maastrichtian Roadian Cambrian-Stage 10 Orosirian 3* Furongian Cambrian-Stage 9 Orosinian 2* Campanian Kungurian Pabian Orosinian 1* Santonian Artinskian Late/Upper Paleozoic Cisuralian Coniacian Sakmarian Guzhangian Rhyacian Rhyacian Turonian Asselian Series 3 Drumian Siderian 2* Siderian Mesozoic Cambrian-Series 3-Stage 5 Cenomanian Gzhelian Siderian 1* Late/Upper Cambrian-Stage 4 Neoarchean 2* Albian Kasimovian 1 Series 2 Neoarchean Aptian Middle Moscovian Cambrian-Stage 3 Neoarchean 1* Barremian Lower Bashkirian Cambrian-Stage 2 Mesoarchean Mescarchean Early/Lower Terreneuvian Upper Hauterivian Serpukhovian Fortunian Paleoarchean Paleoarchean Valanginian Middle Visean Ecarchean Colours according to the Geological Time Scale 2006, International Commission of Stratigraphy, with the addition of 27 newly defined colours for the proposed new European Proterozoic Epochs Berriasian Hadean (informal) Lower Tournaisian

Figure 6-2: The 1G-E portrayal for the age.

1G-E ID	1G-E Term	Symbol [lw = line width in pixel]	R	G	В
ct1	Contact		194	193	193
ct1.1	Lithogenetic contact	w 1 pat	194	193	193
ct1.1.1	Volcanic subsidence zone boundary	3) 3]	80	240	16
ct1.1.2	Impact structure boundary	• • 2 px	80	240	16
ct1.2	Glacial stationary line	har 2 px	116	40	110

Table 6-1: The 1G-E portrayal for Contacts

Table 6-2: The 1G-E portrayal for Faults

1G-E ID	1G-E Term	Symbol [lw = line width in pixel]	R	G	В
ft	Fault	kw 2 p	0	0	0
ft1	Strike slip fault	8 5 W 2 p	0	0	0
ft1.1	Dextral strike- slip fault	8 5 w 2 p	0	0	0
ft1.2	Sinistral strike- slip fault	8 5 W 2 p	0	0	0
ft2	Reverse fault (no dip)	2 Iw 2 p	0	0	0
ft2.1	Thrust fault	w 2 p	0	0	0
ft2.2	High angle reverse	2 w 2 p	0	0	0
ft3	Normal fault (no dip)	3) 3)	0	0	0
ft3.1	Low-angle normal fault	3) 3)	0	0	0
ft3.1.1	Detachment fault	3) Mr 3 pa	0	0	0
ft3.2	High-angle normal fault	3) W 3 p	0	0	0
ft4	Oblique slip fault	8 No 2 px	0	0	0

7. Outlook

The GeoSciML scheme and the CGI/GeoSciML vocabularies, both developed by the Concept Definition Task Group (CDTG) within the Interoperability Working Group (IWG) of the IUGS Commission for the Management and Application of Geoscience Information (CGI), built a major basis for this Data Specification.

The Operational Management Group of 1G-E has decided that this geological Data Specification should contribute to, and take forward, the single global (IUGS endorsed) scheme. The additions or amendments required by the 1G-E project (tab. 7-1) were proposed to, discussed with and accepted by the CGI CDTG. Any issues or conflicts arising were resolved jointly by the IWG and the WP 3 team and therefore a single unified global scheme results was ensured; apart from two additional elements in the 1G-E vocabulary that are not globally applicable and are therefore a part of a specific European, rather than a global vocabulary: European terms for orogenic events and additional sub-divisions of the Pre-Cambrian at epoch level.

Table 7-1 displays the features where amendments of terms were deemed necessary and indicates where the CGI/GeoSciML vocabulary could be used as a subset or in full. It also shows, which amendments were proposed to the IUGS-CGI IWG Geoscience Concept Definitions Task Group.

Classes in GeoSciML Application Schema	Used by 1G-E	Amended by 1G-E
MineralOccurence	no	no
Boreholes and observations	no	no
Concepts and vocabularies	yes	yes
Earth Material	yes	no
Fossil	no	no
GSML collection	yes	no
Geological Age	yes	yes
Geological Feature	yes	no
Geological Relation	yes	no
Geological Structure	yes	no
Geological Unit	yes	no
Metadata links	no	no
Generic values	yes	no
Geometric values	no	no

Table 7-1: GeoSciML domains used and amended by 1G-E

From the 25. to 27.08.2010 the first International GeoScience Language Workshop (including sessions and connected break-out groups and the GeoSciML Open Day; IGSL 2010) took place in Berlin under the patronage of the Federal Ministry of Economics and Technology. The workshop was initiated by the CGI and coorganised by the 1G-E WP3. 66 participants from six different continents took part and contributed to this workshop. During the Workshop four break-out groups discussed the following topics:

- (1) The need for a coherent geoscience language
- (2) Vocabularies, thesauri and regional examples
- (3) Harmonisation and terms aspirations and reality in Europe
- (4) Current state of the art in machine use of vocabulary services

Within the scope of the break-out groups and the subsequent discussion the following 15 major points, concerning future requirements of geoscience language and harmonisation, were gathered and ordered according to priorities:

- 1. Clarify the end user needs (1). It is important to identify the user needs as a base for defining the suitable level of harmonisation (3). Find an accepted method to collect user needs.
- 2. Identify a persistent & authoritative CGI web location for vocabularies; and a CGI-IUGS namespace for publishing & development (4).
- 3. A project for global harmonisation. (3) Knowledge transfer from 1G-E to all other efforts.
- 4. Need for international standard for vocabulary services. CGI representative on W3C incubator group (4).
- 5. Requirement of an agreed standard guideline and methodology to work on national data harmonisation (policy and practice) (3).
- 6. Explore and adopt best practice from other communities (2).
- CGI establishes vocabulary content provision arrangements with other IUGS domains (4).
- 8. Improve collaboration with other ML groups (1).
- 9. Need to define concepts for categories to create vocabularies (2).
- 10. Clarify scope of information resources for CGI interoperability activities (1).
- 11. Definition of a conceptual harmonisation process is needed and served by technical means (e.g. transformation services) (3).
- 12. Identify achievable deliverables for Brisbane 2012, the next International Geoscience Language Workshop. (1)
- 13. Need to define top level categories (2).
- 14. Provide term mapping to other languages and to other users (2).
- 15. Working Group establishes best practice for construction & use of URIs (Uniform Resource Identifiers) (4).

This clearly shows the interest solving semantic interoperability and harmonisation issues for spatial geological data sets by using and enhancing the 1G-E Data Specification and CGI/GeoSciML standards on a scope exceeding 1G-E.

8. Abbreviations

- **BGR** Federal Institute for Geosciences and Natural Resources
- **1 G-E** OneGeology-Europe
- CDTG Concept Definition Task Group
- **CIPW** normative mineralogy calculation developed by Cross, Iddings, Pirsson and Washington
- **CGI** Commission for the Management and Application of Geoscience Information
- CGMW Commission of the Geological Map of the World

CoGeoInfo Commission on Management and Application of Geoscience Information

CRC LEME Cooperation Research Centre for Landscape Evolution and Mineral Exploration

- **DoW** Description of Work
- **DIGEST** Digital Geographic Information Exchange Standard
- EC European Commission
- ECE-UN Economic Commission for Europe, Committee on Sustainable Energy United Nations
- ECP European Conferences on Planning
- **ESDIN** European Spatial Data Infrastructure
- ETRS89 Europäisches Terrestrisches Referenzsystem 1989
- EU European Union

EU INSPIRE Directive (2007/2/EC)

Directive of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE) to support Community environmental policies, and policies or activities which may have an impact on the environment.

EC INSPIRE Directive Annex I, II, III

Metadata and implementing rules of the spatial data sets concerning themes like e.g. Hydrography, Geology, Soil etc.

EC Soil Directive

Directive of the European Parliament and of the Council of 22nd September 2006 to protect soils across the EU.

EC Water Directive

Directive of the European Parliament and of the Council (98/83/EC) to protect the health of the consumers in the EU and to make sure the water is wholesome and clean.

- ftp file transfer protocol
- **GeoSciML** Geo Science Markup Language is a GML Application Schema that can be used to transfer information about Geology
- **GIS** Geographic Information System
- **GML** Geography Markup Language (GML) is the XML grammar defined by the Open Geospatial Consortium (OGC) to express geographical features
- **GSSR** Geologická služba Slovenskej republicky (until 2000, since then SGUDS)

02.09.2010 Version 2.0

ID	identification number
INSPIRE	INfrastructure for SPatial Information in Europe - May 2007
ISO	International Organization for Standardization
IUGS	International Union of Geological Sciences (non-governmental organization)
IUGS-CGI	Data Model Collaboration Working Group
IWG	Interoperability Working Group
MID/MIF	MapInfo Interchange Format
M8	month 8 = May 2009
M10	month 10 = July 2009
NACSN	North American Commission on Stratigraphic Nomenclature
NADMSC	North American Geologic Map Data Model Steering Committee
NGO	Non-Governmental Organisation
OGC	Open Geospatial Consortium
QAFP	Quartz - Alkali feldspar - Plagioclase - Foids Classification Schema
SCMR	Subcommission on the Systematics of Metamorphic Rocks
SDI	Spatial Data Infrastructure
SGUDS	State Geological Institute of Dionye Stur (since 2000, before that GSSR)
SLTT	Science Language Technical Team (SLTT) of the North American Geologic Map Data Model Steering Committee (NADMSC)
TAS	Total Alkali Silica Classification Schema
TAS UML	Total Alkali Silica Classification Schema Unified Modelling Language. It is an open method used to specify, visualise, construct and document the artefacts of an object-oriented software-intensive system under development
	Unified Modelling Language. It is an open method used to specify, visualise, construct and document the artefacts of an object-oriented software-intensive system under
UML	Unified Modelling Language. It is an open method used to specify, visualise, construct and document the artefacts of an object-oriented software-intensive system under development
UML	Unified Modelling Language. It is an open method used to specify, visualise, construct and document the artefacts of an object-oriented software-intensive system under development United Nations Educational, Scientific and Cultural Organisation
UML UNESCO URN	Unified Modelling Language. It is an open method used to specify, visualise, construct and document the artefacts of an object-oriented software-intensive system under development United Nations Educational, Scientific and Cultural Organisation Uniform Resource Name
UML UNESCO URN WFS	Unified Modelling Language. It is an open method used to specify, visualise, construct and document the artefacts of an object-oriented software-intensive system under development United Nations Educational, Scientific and Cultural Organisation Uniform Resource Name Web Feature Service
UML UNESCO URN WFS WGS84	Unified Modelling Language. It is an open method used to specify, visualise, construct and document the artefacts of an object-oriented software-intensive system under development United Nations Educational, Scientific and Cultural Organisation Uniform Resource Name Web Feature Service World Geodetic System 1984
UML UNESCO URN WFS WGS84 WMS	Unified Modelling Language. It is an open method used to specify, visualise, construct and document the artefacts of an object-oriented software-intensive system under development. United Nations Educational, Scientific and Cultural Organisation Uniform Resource Name Web Feature Service World Geodetic System 1984 Web Map Service
UML UNESCO URN WFS WGS84 WMS WP	Unified Modelling Language. It is an open method used to specify, visualise, construct and document the artefacts of an object-oriented software-intensive system under development United Nations Educational, Scientific and Cultural Organisation Uniform Resource Name Web Feature Service World Geodetic System 1984 Web Map Service Work Package
UML UNESCO URN WFS WGS84 WMS WP WP 1	Unified Modelling Language. It is an open method used to specify, visualise, construct and document the artefacts of an object-oriented software-intensive system under development United Nations Educational, Scientific and Cultural Organisation Uniform Resource Name Web Feature Service World Geodetic System 1984 Web Map Service Work Package OneGeology-Europe Work Package on project management OneGeology-Europe Work Package on user cases and best practice in meeting
UML UNESCO URN WFS WGS84 WMS WP WP 1 WP 1 WP 2	Unified Modelling Language. It is an open method used to specify, visualise, construct and document the artefacts of an object-oriented software-intensive system under development United Nations Educational, Scientific and Cultural Organisation Uniform Resource Name Web Feature Service World Geodetic System 1984 Web Map Service Work Package OneGeology-Europe Work Package on project management OneGeology-Europe Work Package on user cases and best practice in meeting stakeholder needs OneGeology-Europe Work Package on 1:1 million pan-European geological Data
UML UNESCO URN WFS WGS84 WMS WP WP 1 WP 2 WP 3	Unified Modelling Language. It is an open method used to specify, visualise, construct and document the artefacts of an object-oriented software-intensive system under development United Nations Educational, Scientific and Cultural Organisation Uniform Resource Name Web Feature Service World Geodetic System 1984 Web Map Service Work Package OneGeology-Europe Work Package on project management OneGeology-Europe Work Package on user cases and best practice in meeting stakeholder needs OneGeology-Europe Work Package on 1:1 million pan-European geological Data Specification, identification and sourcing OneGeology-Europe Work Package on data inventory and multilingual discovery
UML UNESCO URN WFS WGS84 WMS WP WP 1 WP 2 WP 3 WP 3	Unified Modelling Language. It is an open method used to specify, visualise, construct and document the artefacts of an object-oriented software-intensive system under development United Nations Educational, Scientific and Cultural Organisation Uniform Resource Name Web Feature Service World Geodetic System 1984 Web Map Service Work Package OneGeology-Europe Work Package on project management OneGeology-Europe Work Package on user cases and best practice in meeting stakeholder needs OneGeology-Europe Work Package on 1:1 million pan-European geological Data Specification, identification and sourcing OneGeology-Europe Work Package on data inventory and multilingual discovery metadata catalogue

- WP 7 OneGeology-Europe Work Package on access and licensing protocols
- **WP 8** OneGeology-Europe Work Package on communication, dissemination and awareness
- **WP 9** OneGeology-Europe Work Package on access to high resolution geological & applied datasets in national & cross border situations
- WP 10 OneGeology-Europe Work Package on liaison with related groups and initiatives
- **XMML** eXploration and Mining Markup Language (XMML) is a GML-based XML transfer format for mineral exploration and geoscience data

9. Glossary

Term	Definition	Reference
Application Schema	A set of conceptual schema for data required by one or more applications. An application schema contains selected parts of the base schemas presented in the ORM Information Viewpoint. Designers of application schemas may extend or restrict the types defined in the base schemas to define appropriate types for an application domain. Application schemas are information models for a specific information community.	http://www.opengeospatial.org/ogc/
Attribute	Descriptive information about features or elements of a database. For a database feature like census tract, attributes might include many demographic facts including total population, average income, and age. In statistical parlance, an attribute is a `variable,` whereas the database feature represents an `observation` of the variable.	http://www.opengeospatial.org/ogc/
Catalog	A collection of entries, each of which describes and points to a feature collection. Catalogs include indexed listings of feature collections, their contents, their coverages, and other metadata. Registers the existence, location, and description of feature collections held by an Information Community. Catalogs provide the capability to add and delete entries. At a minimum Catalog will include the name for the feature collection and the locational handle that specifies where this data may be found. The means by which an Information Community advertises its holdings to members of the Information Community and to the rest of the world. Each catalog is unique to its Information Community.	http://www.opengeospatial.org/ogc/
Class	"the primary declarative construct of Object-Oriented Programming; a cohesive unit of Attributes and Operations; a compile-time template for an Object"	http://en.wikipedia.org/wiki/Glossar y_of_Unified_Modeling_Language_ terms
Concept	Concepts are merely a distillation or abstraction from perceptions of the world of experience. Therefore, the significance of concepts depends solely on the perceptions that are its references.	http://en.wikipedia.org/wiki/Concept
Conceptual Data Model	The general idea of a structural design (model: description or analogy used to help visualize something that cannot be directly observed.	(Meriam-Webster)
Content Model	Models of this kind show the contents of a user interface and its different components. Aesthetics and behavior details are not included in this kind of models as it is in usage-centered design models. In usage-centered design, the modeling task is to show how the actual presentation of a planned system and how the user interaction is supposed to happen. This is probably the most praised approach, and it has been used successfully on a variety of small and large-scale projects. Its strengths are in complex problems.	http://en.wikipedia.org/wiki/User_Int erface_Modeling#Content_models
Controlled Concept	At its simplest a ControlledConcept will have a name and, commonly, a description. VocabRelations enable the relationship between ControlledConcepts to be described and can be used to implement thesaurus type relationships like 'broader than', 'narrower than', 'related term', and 'synonym'.	(from "GeoSciML Cookbook: How To Map Data to CGGeoSciML Version 2")

Term	Definition	Reference
Controlled Vocabularies	" provide a way to organize knowledge for subsequent retrieval. They are used in subject indexing schemes, subject headings, thesauri and taxonomies. Controlled vocabulary schemes mandate the use of predefined, authorised terms that have been preselected by the designer of the vocabulary, in contrast to natural language vocabularies, where there is no restriction on the vocabulary"	http://en.wikipedia.org/wiki/Controll ed_vocabulary
Data Model	"An abstraction of the real world which incorporates only those properties thought to be relevant to the application at hand. The data model would normally define specific groups of entities, and their attributes and the relationships between these entities. A data model is independent of a computer system and its associated data structures. A map is one example of an analogue data model."	http://www.opengeospatial.org/ogc/
Dataset	Collection of datasets sharing the same product specification	http://www.opengeospatial.org/ogc/
Feature	The starting point for modeling of geographic information. Abstraction of a real world phenomenon. "A digital representation of a real world entity or an abstraction of the real world. It has a spatial domain, a temporal domain, or a spatial/temporal domain as one of its attributes. Examples of features include almost anything that can be placed in time and space, including desks, buildings, cities, trees, forest stands, ecosystems, delivery vehicles, snow removal routes, oil wells, oil pipelines, oil spill, and so on. Features are usually managed in groups as feature collections. The terms feature and object are often used synonymously. The terms feature, feature collection and coverage are defined in line with OpenGIS."	http://www.opengeospatial.org/ogc/ ; Source: The OpenGIS® Abstract Specification Topic 6: The Coverage Type and its 1G-E Subtypes Version 6. http://www.opengis.org/techno/abst ract/00-106.pdf
Harmonisation	With respect to standards: activities undertaken by communities of experts to align standards. For example, to define common metadata and application schema from legacy sources, harmonization will consider: Architecture - multiple viewpoints that capture high level requirements, use cases, scenarios, information flows and computational flows Data modelling - definition and UML encoding of feature type, attribute type, data type, coding, dependency mapping Schema modelling - UML mapping and encoding to GML, mapping of profiles to one another, and delineation to service types Iteration and development - build a little, see if it works, build more Delivery to standards organizations for approval.	http://www.opengeospatial.org/ogc/
INSPIRE Directive	The purpose of this Directive is to lay down general rules aimed at the establishment of the Infrastructure for Spatial Information in the European Community (hereinafter referred to as Inspire), for the purposes of Community environmental policies and policies or activities which may have an impact on the environment.	http://ec.europa.eu/gmes/pdf/Dir_IN SPIRE_L108.pdf

Term	Definition	Reference
Interoperability	Capability to communicate, execute programs, or transfer data among various functional units in a manner that requires the user to have little or no knowledge of the unique characteristics of those units ISO 2382-1. "The ability for a system or components of a system to provide information portability and interapplication, cooperative process control. Interoperability, in the context of the OpenGIS Specification, is software components operating reciprocally (working with each other) to overcome tedious batch conversion tasks, import/export obstacles, and distributed resource access barriers imposed by heterogeneous processing environments and heterogeneous data.	http://www.opengeospatial.org/ogc/
Metadata	Data about data or a service. Metadata is the documentation of data. In human-readable form, it has primarily been used as information to enable the manager or user to understand, compare and interchange the content of the described data set. In the Web Services context, XML-encoded (machine- readable and human-readable) metadata stored in catalogs and registries enables services to use those catalogs and registries to find data and services.	ISO 19115
Portrayal	The presentation of information to humans, e.g., a map. In the context of the Web, portrayal refers to how data is presented for the user. Map portrayal, for example, is concerned with shape and color of symbols representing features, rules for displaying text labels, rules for showing/not showing symbols based on zoom extent, etc	http://www.opengeospatial.org/ogc/
Property	A facet or attribute or an object referenced by a name.	http://www.opengeospatial.org/ogc/
Schema / Sheme	A structured framework. A metadata schema specifies the order and types and labels of information elements describing a geodata set.	http://www.opengeospatial.org/ogc/
SDI /GDI	"(Geo)Spatial Data Infrastructure: a comprehensive package of consensus and initiatives required to enable complete provision of data, access and privacy within the territory of the designated infrastructure."	http://www.gsdi.org/SDILinks.php
Semantic	A collection of mappings between a target Information Community's data model and a source Information Community's data model, generally held and maintained by the target Information Community, though both Information Communities may participate in configuring it. Usually expressed in terms of metadata, features, attributes and rules that permit information integration to occur when a feature collection is imported to the target Information Community from a source Information Community.	http://www.opengeospatial.org/ogc/
Spatial data	Also known as geospatial data or geographic information it is the data or information that identifies the geographic location of features and boundaries on Earth, such as natural or constructed features, oceans, and more. Spatial data is usually stored as coordinates and topology, and is data that can be mapped. Spatial data is often accessed, manipulated or analyzed through Geographic Information Systems	http://www.webopedia.com/TERM/ S/spatial_data.html
Specification	A document written by a consortium, vendor, or user that specifies a technological area with a well-defined scope, primarily for use by developers as a guide to implementation. A specification is not necessarily a formal standard.	http://www.opengeospatial.org/ogc/

Term	Definition	Reference
Standard	A document that specifies a technological area with a well- defined scope, usually by a formal standardization body and process.	http://www.opengeospatial.org/ogc/
Term	A word or expression that has a precise meaning in some uses or is peculiar to a science, art, profession, or subject	(Meriam-Webster).
Vocabulary	A collection of vocabulary terms, usually linked to a document that defines the precise meaning of the descriptors and the domain in which the vocabulary is expected to be used. When associated with a schema, attributes are expressed as URI references. [This definition is an amalgam of those provided in Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies 1.0 and OWL Web Ontology Language Guide.]	http://www.w3.org/2005/Incubator/g eo/XGR-geo-20071023/#glossary

10. Selected Standards

ISO Geographic Information, Symbols and Nomenclature:

ISO 710-7 (1984): Graphical symbols for use on detailed maps, plans and geological cross-sections, Part 7: Tectonic symbols.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=4926

ISO14689-1 (2003): Geotechnical investigation and testing —Identification and classification of rock, Part 1:Identification and description. http://www.iso.org/iso/catalogue_detail?csnumber=35572

ISO/TC 211 (2009): Geographic Information/Geomatics. http://www.isotc211.org/Outreach/ISO_TC%20_211_Standards_Guide.pdf

Open Geospatial Consortium technical specifications (standards):

Introduction and overview: http://www.opengeospatial.org/standards

Some web service interface specifications of particular interest: Web Service Common: http://www.opengeospatial.org/standards/common

Web Map Service: http://www.opengeospatial.org/standards/wms

Web Map Context: http://www.opengeospatial.org/standards/wmc

Styled Layer Descriptor: http://www.opengeospatial.org/standards/sld

Web Feature Service: http://www.opengeospatial.org/standards/wfs

Web Coverage Service: http://www.opengeospatial.org/standards/wcs

Catalogue Services Specification:

http://www.opengeospatial.org/standards/cathttp://portal.opengeospatial.org/files/?artifact_id=5929&version=2

Methodology of Data Specification:

Drafting Team "Data Specifications" Methodology for the development of data Specifications (2007): http://inspire.jrc.ec.europa.eu/reports/ImplementingRules/inspireDataspecD2_6v2.0.pdf

Some metadata schemas of interest:

INSPIRE Metadata Implementing Rules: Technical Guidelines based on EN ISO 19115 and EN ISO 19119. (2009):

 $http://inspire.jrc.ec.europa.eu/reports/ImplementingRules/metadata/MD_IR_and_ISO_20090218.pdf$

ISO 19115 (Dataset Metadata): http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26020

ISO 19115 Corrigendum: http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=44361 ISO 19119 (Service Metadata): http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39890

ISO 19136 Annex E for GML 3.2.1, 2009: Geoinformation – Geography Markup Language (GML) Annex E (normative): UML- to GML application schema encoding rules

ANZLIC Metadata: http://www.anzlic.org.au/infrastructure_metadata.html

FGDC Metadata: http://www.fgdc.gov/metadata

ISO DTS 19139 (XML Schema): https://www.seegrid.csiro.au/subversion/xmml/gml/trunk/gml/3.2.0/gmd/gmd.xsd

Ontology/thesaurus/vocabulary principles and management technologies:

Intro: "The Ontology Spectrum and Semantics Models" (Leo Orbrst): http://ontolog.cim3.net/file/resource/presentation/LeoObrst_20060112/OntologySpectrumSemanticMo dels--LeoObrst_20060112.ppt

GeoSciML Vocabulary model: https://www.seegrid.csiro.au/twiki/bin/view/CGIModel/GeologicVocabulary

CoGeoInfo Multilingual Thesaurus of Geosciences: http://www.bgs.ac.uk/cgi_web/Multilingual_thesaurus_of_geoscience.pdf

Geoscience data standards:

GeoSciML, a GML Application Schema for geology: https://www.seegrid.csiro.au/twiki/bin/view/CGIModel/ GeoSciML GeoSciML model and schema: https://www.seegrid.csiro.au/subversion/xmml/ GeoSciML/trunk/ https://www.seegrid.csiro.au/subversion/GeoSciML/tags/2.0 20080702/model/

XML Schema for the Geologic Timescale: https://www.seegrid.csiro.au/twiki/bin/view/CGIModel/GeologicTime

CoGeoInfo Multilingual Thesaurus of Geosciences: http://www.bgs.ac.uk/cgi_web/Multilingual_thesaurus_of_geoscience.pdf

Geoscience Australia data standards: http://www.ga.gov.au/standards/standards.jsp

BGS data dictionaries: http://www.bgs.ac.uk/data/dictionaries.html

USGS/AASG mapping standards and guidelines: http://ngmdb.usgs.gov/Info/standards/index.html

GeoSciML documentation: http://www.geosciml.org/geosciml/2.0/doc/

GeoSciML encoding 'cookbook': http://www.geosciml.org/geosciml/2.0/cookbook/GeoSciML_Data_CookBook_V2.pdf.

Create URN following the CGI pattern described at https://www.seegrid.csiro.au/twiki/bin/view/CGIModel/CGIIdentifierScheme.

A full list of registered CGI parties, who are able to register resources, is available at https://www.seegrid.csiro.au/twiki/bin/view/CGIModel/CGIPartyRegister.

11. References

- ASCH, K. BELLENBERG, S., GRAFFE, D. MÜLLER, A. SCHÖNHOFEN, K., SCHUBERT, C., TROPPENHAGEN, H.-G., VINNEMANN, C., 2009: Colour Scheme for Printing and Display on Screen for the 1:5 Million International Geological Map of Europe (IGME 5000). BGR (Hannover).
- ASCH, K., 2005: The 1:5 Million International Geological Map of Europe and Adjacent Areas. BGR (Hannover).

ASCH, K., 2003: The 1:5 Million International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-enabled Concept. Geologisches Jahrbuch; SA 3, 190 pp., 45 fig., 46 tab. BGR, Hannover (ed.); Schweitzerbart (Stuttgart).

- BATES, R.L. & JACKSON, J.A., 1987: Glossary of Geology (3rd Ed.). American Geological Institute, 788 pp. (Alexandria, Virginia).
- Best, M.G., 1982: Igneous and metamorphic petrology. W.H. Freeman and Company (New York).
- BGR & UNESCO, 1964-2000: 1:1 500 000 series of the International Geological Map of Europe and the Mediterranean Regions, 3rd ed; BGR (Hannover).

BINGEN, B., ANDERSON, J., SÖDERLUND, U., MÖLLER, C., 2008: The Mesoproterozoic in the Nordic Countries. Episodes, Vol. 31, 29-34; Journal of International Geoscience (Beijing).

BOWES D.R., 1989: The Encyclopedia of Igneous and Metamorphic Petrology. Van Nostrand Reinhold (New York).

BUCHER, K. & FREY, M., 1994: Petrogenesis of Metamorphic Rocks (7th Ed.). Springer (Berlin).

CARMICHAEL, I.S. TURNER, F.J., VERHOOGEN, J., 1974: Igneous petrology. McGraw Hill Book Co., p.42-43 (New York).

CLELAND, D.T., AVERS, P.E., McNAB, W. H., JENSEN, M.E., BAILEY, R.G., KING, T., RUSSELL, W.E., 1997: National Hierarchical Framework of Ecological Units. In: BOYCE, M.S. & HANEY, A. (eds.): Ecosystem Management: Applications for Sustainable Forest and Wildlife Resources. Yale University Press, pp. 181-200 (New Haven & London).

CGI IWG, in review 2010: Simple Lithology vocabulary - Draft vocabularies for GeoSciML Web services. Available at https://www.seegrid.csiro.au/twiki/bin/view/CGIModel/ConceptDefinitionsTG.

CHAFETZ, H.S., & FOLK, R.L., 1984: Travertine: Depositional morphology and the bacterially constructed constituents. J. Sed. Petrology, 126, p.57-74.

COUTINHO, J.M.V., KRÄUTNER, H.G., SASS, F.P., SCHMID, R, SEN, S., 2007: A systematic nomenclature for metamorphic rocks: 8. Amphibolite and Granulite. Recommendations by the IUGS subcommission on the Systematics of Metamorphic Rocks. Recommendations, Webversion of 01.02.2007. http://www.bgs.ac.uk/scmr/docs/papers/paper8.pdf

Economic Commission for Europe, Committee on Sustainable Energy - United Nations (ECE-UN), 1998: International Classification of in-Seam Coals. Energy 19, 41 pp. (New York and Geneva).

- EGGLETON, R.A. (ed.), 2001: The Regolith Glossary; surficial geology, soils and landscapes. CRC LEME (Canberra).
- FAIRBRIDGE, R.W. & BOURGEOIS, J. 1978: The Encyclopedia of Sedimentaology. Encyclopedia of Earth Science Series, Vol. VI. Stroudsberg, Pennsylvania: Dowden, Hutchinson and Ross, Academic Press (New York).
- FETTES, D. & DESMONS, J., 2007: Metamorphic Rocks A Classification and Glossary of Terms Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Metamorphic Rocks. Cambridge University Press (Cambridge).
- FRY, N., 1984: The Field Description of Metamorphic Rocks. John Wiley & Son Ltd (London).
- GILLESPIE, M.R. & STYLES, M.T., 1999: BGS Rock Classification Scheme, Volume 1, Classification of igneous rocks. British Geological Survey (Nottingham).
- HALLSWORTH, C.R. & KNOW, R. W, B., 1999: BGS Rock Classification Scheme. Volume 3: Classification of sediments and sedimentary rocks. British Geological Survey (Nottingham).
- HARRIS C.S., 2009: Chalk facts A summary of geological facts on Chalk, selected for you by a professional geologist. http://www.geologyshop.co.uk/chalk.htm

HAQ, B. U. & VAN EYSINGA F.W.B., 1998: Geological Time Table. Elsevier Science B.V. (Amsterdam).

HAWLEY, J.W., & PARSONS, R.B., 1980: Glossary of selected geomorphic and geologic terms. Mimeo. USDA Soil Conservation Service, West National Technical Center, 30p. (Portland).

HEEZEN, B.C. & LAUGHTON, A.S., 1963: Abyssal plains. In: M.N. Hill: The Sea (3rd Ed.). Wiley-Interscience, pp. 312-164 (New York).

INSPIRE, 2008: D 2.6: Methodology for the development of Data Specifications- Drafting Team Data Specifications. Inspire Drafting Team on Data Specifications (ISRA).

ISO 710/7-1984, 1984: Graphical symbols for use on detailed maps, plans and geological crosssections – Part 7: Tectonic symbols. UDC 528:94 : 551.24 : 003.62. Beuth (Berlin).

- IUGS ICS, 2009: International Stratigraphic Chart. http://www.stratigraphy.org/upload/ICSchart2009.pdf
- IUGS SCMR, 2007: Metamorphic Rocks: A Classification and Glossary of Terms. Cambridge University Press.
- JACKSON, J.A. (ed.), 1997: The Glossary of Geology definition for delta (4th ed.). American Geological Institute, 769p. (Alexandria, VA).

- KRUMMBEIN, W.C. & SLOSS, L.L., 1963: Stratigraphy and Sedimentation (2nd Ed.). Freeman (San Francisco).
- KRUMBEIN, W.C. & PETTIJOHN, E.J., 1938: Manual of Sedimentary Petrography. Appleton Century Co., Inc. (New York).
- KOISTINEN, T., STEPHENS, M.B., BOGATCHEV, V., NORDGULEN, Ø., WENNERSTRÖM, M., KORHONEN, J., 2001: Geological map of Fennoscandian Shield, scale 1:2 000 000. Geological Surveys of Finland, Norway and Sweden and the North-West Department of Natural Resources of Russia.
- LEMAITRE, R.W. (ed.); STRECKEISEN, A., ZANETTI, B., LEBAS, M.J., BONIM, B., BATEMAN, P., BELLIENI, G., DUDEK, A., EFREMOVA, J., KELLER, J., IAMERE, J., SABINE, P.A., SCHMIDT, R., SORENSEN, H., WOOLLEY, A.R., 2002: Igneous Rocks – A Classification and Glossary of Terms – Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks (2nd Ed.). Cambridge University Press (Cambridge).

LINDNER, E., 1993: Chemie für Ingenieure. Lindner Verlag (Karlsruhe).

LINNEMANN, U., 2003: The structural units of Saxo-Thuringia. Geologia Saxonia, 48/49, 19-28.

MARSHAK, S., & MITRA, G., 1988: Basic Methods of Structural Geology. Prentice Hall, 446p.

- MATTE, P., 2001: The Variscan collage and orogeny (480±290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova, 13, 122-128.
- MCKERROW, W.S., MAC NIOCAILL, C., DEWEY, J.F., 2002: The Caledonian Orogeny redefined. Journal of the Geological Society, 157, 1149-1154 (London).
- North American Commission on Stratigraphic Nomenclature (NACSN), 1983: North American Stratigraphic Code. American Association of Petroleum Geologists (AAPG) Bulletin, 67, 841–875.
- MURAWSKI, H. & MEYER, W., 1998: Geologisches Wörterbuch (10., neu bearb. und erw. Aufl.). Enke (Stuttgart).
- NEUENDORF, K.K.E, MEHL J.P., JACKSON, J.A., 2005: Glossary of Geology (5th Ed.). American Geological Institute, 779p. (Alexandria, Virginia).
- OGG, J.G & GRADSTEIN, F.M., 2008: The Concise Geologic Time Scale. Cambridge University Press (Cambridge).
- ORTON, G.J., 1996: Volcanic environments. in READING, H.G. (ed.), 1978: Sedimentary Environments: Processes, Facies and Stratigraphy (3rd Ed.). Blackwell Science, pp. 485-567 (Oxford).
- READING, H.G., 1978: Sedimentary Environment and Facies, Oxford. Blackwell Scientific Publications (Cambridge).
- PETTIJOHN, E.J., POTTER, P.E., SIEVER, R., 1972: Sand and Sandstone: Springer Verlag, 681 p. (New York).

02.09.2010 Version 2.0

PETTIJOHN, E.J., 1975: Sedimentary Rocks (3rd Ed.). Harper & Row (New York).

PETTIJOHN, E.J., 1987: Sand and Sandstone: Springer Verlag (2nd Ed.), 553 p. (New York).

- PLAŠIENKA D., GRECULA, P., PUTIŠ, M., KOVAČ, M., HOVORKA, P., 1997: Evolution and structure of the Western Carpathians: an overview. Geological evolution of the Western Carpathians, Mineralia Slovaca, Monograph pp. 1-24 (Bratislava).
- POSTMA, G., 1986: Classification for sediment gravity-flow deposits based on flow conditions during sedimentation. Geology v. 14 p291-294
- PUTIŠ, M., IVAN, P., KOHÚT, M., SPIŠAK, J., SIMAN, P., RADVANEC, M., UHER, P., SERGEEV, S., LARIONOV, A., MÉRES, Š., DEMKO, R., ONDREJKA, M., 2009: Metaigneous rocks of the West-Carpathian basement, Slovakia: Indicators of Early Paleozoic extension and shortening events. Bulletin of the Geological Society of France, 180, 6, 461-471.
- PUTIŠ M., SERGEEV, S., ONDREJKA, M., LARIONOV, A., SIMAN, P., SPIŠAK, J., UHER, P., PADERIN, I., 2008: Cambrian-Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: a record from the Gondwana active margin setting. Geologica Carpathica 59, 1, 3-18 (Prague).
- Salvador, A., 1994: International Stratigraphic Guide (2nd Ed.). The Geological Society of America, Inc. USA, 172p.
- Science Language Technical Team (SLTT) of the North American Geologic-map Data Model Steering Committee (NADMSC), 2004:
- SCHMID, R., 1981: Descriptive Nomenclature and Classification of Pyroelastic Deposits and Fragments. Geologische Rundschau, 70, 2, 794-799.
- SMULIKOWSKI, W., DESMONS, J., HARTE, B., SASSI, F., SCHMIDT, R., 2003: Towards a unified nomenclature in metamorphic petrology: 2. Types, Grade and Facies. IUGS-SCMR, web version of 31-1-2003.
- STÖFFLER, D. & GRIEVE, R, A, F., 2007: Impactites, Chapter 2.11 in Fettes, D. and Desmons, J. (eds.) Metamorphic Rocks: A Classification and Glossary of Terms, Recommendations of the International Union.

TORRES, V., & ANTONIO, J., 1994: Estratigrafía: Principios y Métodos. Ed. Rueda (Alcoron).

TRÜMPY, R., 1983: Alpine paleogeography – A reappraisal. In Hsü, K.J. (ed.) Mountain Building Processes. Academic Press, 149–156.

VAN EYSINGA, F.W.B. (ed.), 1975: Geological time Table (3rd Ed.). Elsevier (Amsterdam).

WIMMENAUER, W., 1985: Petrographie der magmatischen und metamorphen Gesteine. Enke (Stuttgart).

WINKLER, H.G.F. (1979): Petrogenesis of Metamorphic Rocks (5th Ed). Springer, p.16. 02.09.2010 *Version 2.0*

WENWORTH, C. K., 1922: A scale of grade and class terms for clastic sediments; Journal of Geology, 30: 377-392.

Webster's Encyclopedic Unabridged Dictionary of the English Language, 2001. Thunder Bay Press (CA); Indexed edition, 2230 pp.

12. List of Tables

Table 3-1: Overview over the Feature Types used in the 1G-E Data Specification. Table 3-2: The 1G-E term to describe the MappedFeatureObservationMethod. Table 3-3: The 1G-E terms to describe the ObservationMethod of GeologicFeatures. Table 3-4: The 1G-E vocabulary to describe the GeologicUnitType. Table 3-5: The 1G-E vocabulary to describe the GeologicUnitMorphology. Table 4-1: Overview over the 1G-E vocabularies. Table 4-2: The 1G-E vocabulary for the description of the age of a GeologicUnit. Table 4-3: The GeoSciML vocabulary for the description of the ProportionTerm of GeologicUnit; for 1G-E only the three terms 'all', 'predominant' and 'subordinate' are used. Table 4-4: The 1G-E vocabulary for the description of the role property of GeologicUnit. Table 4-5: The 1G-E vocabulary for Igneous Material.
 Table 4-6: The 1G-E vocabulary for Sedimentary Material.
 Table 4-7: The 1G-E vocabulary for Composite genesis material. Table 4-8: The 1G-E vocabulary for Breccia and Tuffite. Table 4-9: The 1G-E vocabulary for EventEnvironment. Table 4-10: The 1G-E vocabulary for EventProcess. Table 4-11: The 1G-E vocabulary for MetamorphicFacies.
 Table 4-12:
 The 1G-E vocabulary for MetamorphicGrade.

 Table 4-13: The 1G-E vocabulary for ContactType.
 Table 4-14: The 1G-E vocabulary for FaultType.
 Table 4-15:
 The 1G-E vocabulary for OrogenicEvents.

 Table 5-1: Overview over the properties of the EuroGlobalMap (EGM).

Table 6-1: The 1G-E portrayal for contacts.**Table 6-2**: The 1G-E portrayal for faults.

Table 7-1: GeoSciML domains used and amended by 1G-E.

13. List of Figures

Figure 1-1: Participating countries in OneGeology-Europe. **Figure 1-2:** Schema of the development of the 1G-E Data Specification.

Figure 3-1: Example of the encoding of the Shape porperty of MappedFeature.

Figure 3-2: Example of the encoding of the MappedFeature properties ObservationMethod, PositionalAccuracy and SamplingFrame.

Figure 3-3: Example of the encoding of the GeologicUnit properties ID, Name, Description and Purpose.

Figure 4-1: Example of the encoding of PreferredAge.

Figure 4-2: Example of the encoding of GeologicHistory to provide a numerical age. The coding of the GeologicUnitType property is also shown.

Figure 4-3: Hierarchical overview representation of the 1G-E vocabulary for the description of the age of a GeologicUnit. For clarity concepts are indicated up to Epochs only.

Figure 4-4: Hierarchical overview representation of the 1G-E vocabulary for Igneous material. For clarity only the main groups are indicated.

Figure 4-5: Hierarchical overview representation of the 1G-E vocabulary for Sedimentary material. For clarity only the main groups are indicated.

Figure 4-6: Hierarchical overview representation of the 1G-E vocabulary for Composite genesis material. For clarity only the main groups are indicated.

Figure 4-7: Hierarchical overview representation of the 1G-E vocabulary for EventEnvironment.

Figure 4-8: Hierarchical overview presentation of the 1G-E vocabulary for EventProcess.

Figure 4-9: Example of the encoding of MetamorphicDescription.

Figure 4-10: Example of the encoding of ContactType.

Figure 4-11: Hierarchical overview representation of the 1G-E vocabulary for ContactType.

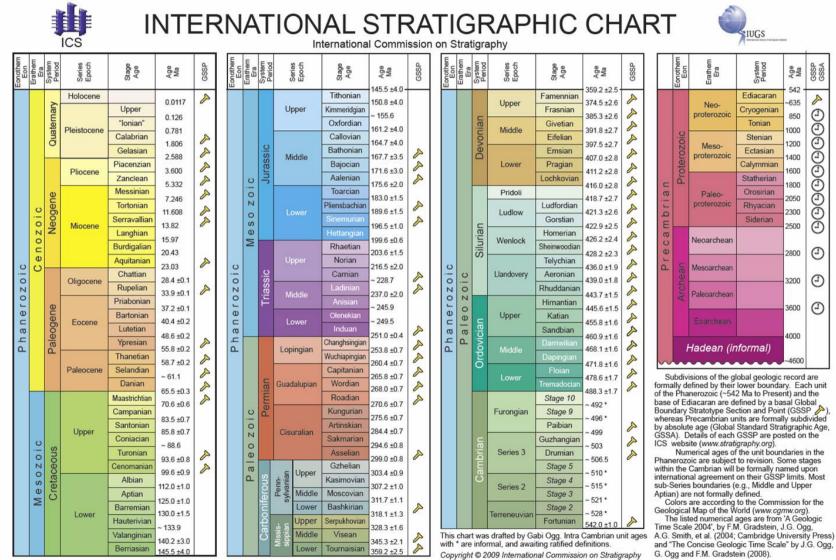
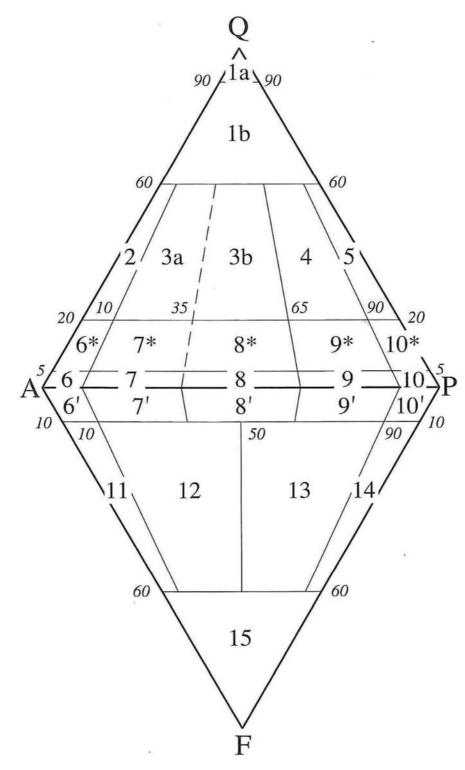

Figure 4-12: Hierarchical overview representation of the 1G-E vocabulary for FaultType.

Figure 4-13: Hierarchical overview representation of the 1G-E vocabulary for OrogenicEvents

Figure 6-1: The 1G-E portrayal for the lithology. **Figure 6-2:** The 1G-E portrayal for the age.

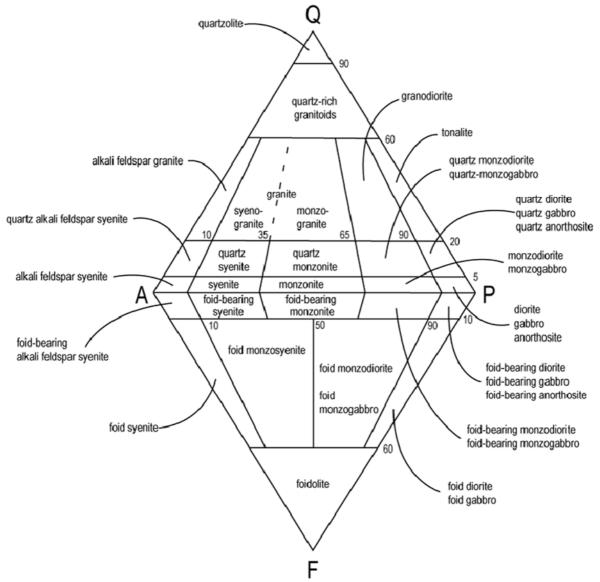
ANNEX I : IUGS Stratigraphic Chart



August 2009

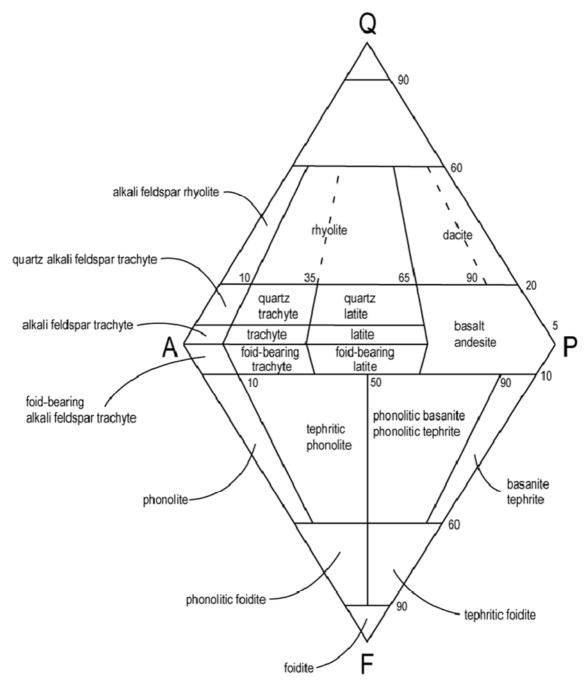
ANNEX II : IUGS Classification Schemas for Igneous Rocks

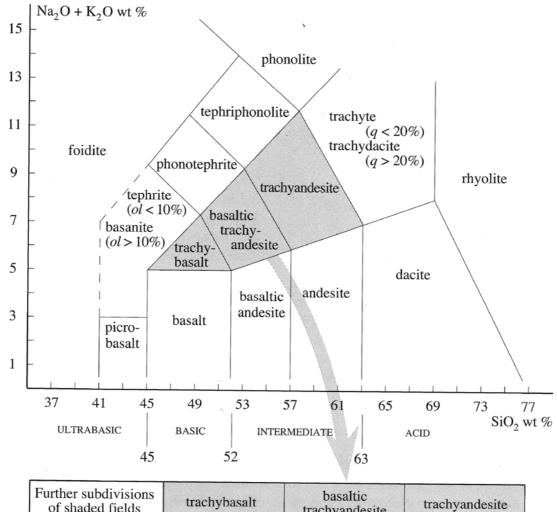
QAPF modal classification of plutonic and volcanic rocks (Q = quartz, A = alkali feldspar, P = plagioclase, F = feldspathoid) (LeMaitre et. al. 2002)



133/137

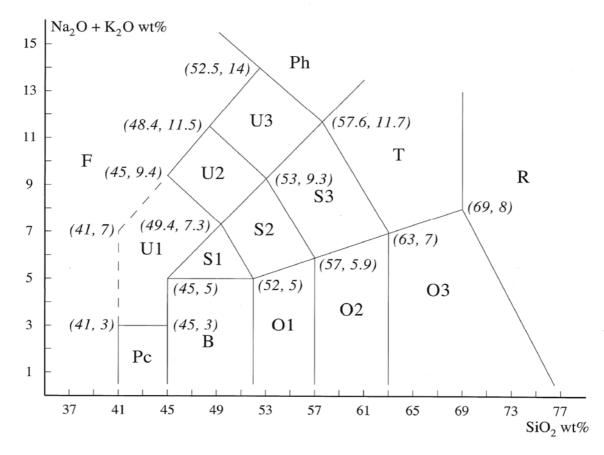
QAPF modal classification of plutonic and volcanic rocks (Q = quartz, A = alkali feldspar, P = plagioclase, F = feldspathoid)


Plutonic Rocks



QAPF modal classification of plutonic and volcanic rocks (Q = quartz, A = alkali feldspar, P = plagioclase, F = feldspathoid)

Volcanic Rocks



Additional chemical classification of volcanic rocks (Total Alkali – Silica, TAS)

Further subdivisions of shaded fields	trachybasalt	basaltic trachyandesite	trachyandesite
Na ₂ O − 2.0 ≥ K ₂ O	hawaiite	mugearite	benmoreite
$Na_{2}O - 2.0 < K_{2}O$	potassic trachybasalt	shoshonite	latite

Additional chemical classification of volcanic rocks (Total Alkali – Silica, TAS)